ASYMPTOTIC PROPERTIES OF A STOCHASTIC DIFFUSION TRANSFER PROCESS WITH AN EQUILIBRIUM POINT OF A QUALITY CRITERION

A. V. Nikitin UDC 519.21+62

Abstract. Weak convergence conditions are obtained for a diffusion transfer process with Markov switchings and a control with an equilibrium point of quality criterion functions. A procedure is constructed for the stochastic approximation of such a point in a scheme of series.

Keywords: stochastic diffusion equation, generator on a Banach space, Markov process, stochastic approximation procedure.

INTRODUCTION

A random evolution in the form of a diffusion process with a control determined by the condition of reaching the extremum of a quality criterion function was studied in [1, 2]. A particular case is the existence of an equilibrium point of the quality criterion used in many applied optimal estimation problems [3, 4]. The problem of asymptotic behavior of systems under random disturbances [5] is independently considered. The latter problem was investigated using a small parameter in schemes of series and diffusion approximation [6]. To prove important statements, the Korolyuk model theorem [7] is used. In [8], a continuous procedure of stochastic optimization under the direct influence of a Markov process on regression functions and a pulse disturbance in a diffusion approximation scheme are considered.

This article considers the convergence of a diffusion transfer process with Markov switchings and a control with an equilibrium point of the quality criterion function for which a procedure of stochastic approximation in a scheme of series is constructed.

PROBLEM STATEMENT

Let a transfer process $y(t) \in \mathbf{R}^d$ be defined by the stochastic differential equation

$$dy(t) = a(y(t), x(t))dt + \sigma(y(t), x(t), u(t))dw(t),$$
(1)

where x(t), t > 0, is a uniformly ergodic Markov process defined by the generator

$$Q\varphi(x) = q(x) \int_{Y} P(x, dy) [\varphi(y) - \varphi(x)]$$
 (2)

in a measurable phase space (X,X) [6] on the Banach space B(X) of real-valued bounded functions $\varphi(x)$ with the supremum norm

$$||\varphi(x)|| = \sup_{x \in X} |\varphi(x)|.$$

Kamianets-Podilskyi Ivan Ohienko National University, Kamianets-Podilskyi, Ukraine, *nik_tol@rambler.ru*. Translated from Kibernetika i Sistemnyi Analiz, No. 4, pp. 169–175, July–August, 2015. Original article submitted October 6, 2014

The generator Q is reducibly inverse on B(X) with the projector $\Pi \varphi(x) := \int_X \pi(dx) \varphi(x)$, where $\pi(B)$ $(B \in X)$ is the

stationary distribution of the Markov process x(t), $t \ge 0$; this distribution is found from the relationships $\pi(dx)q(x) = q\rho(dx)$, $q = \int_X \pi(dx)q(x)(\rho(dx))$ is the stationary distribution of the embedded Markov chain x_n , $n \ge 0$, and the

potential R_0 of the Markov semigroup $R_0 = \Pi - [Q + \Pi]^{-1}$.

The functions $a(y,x) = (a_k(y,x), k = \overline{1,d})$ and $\sigma(y,x,u) = (\sigma_k(y,x,u), k = \overline{1,d})$, $y \in \mathbb{R}^d$, $x \in X$, satisfy the conditions of existence of a global solution of the evolution equations

$$dy_{x}(t) = a(y_{x}(t), x)dt + \sigma(y_{x}(t), x, u_{x}(t))dw(t), \ x \in X,$$
(3)

for each fixed value of x of the Markov process x(t), $t \ge 0$, in an interval $[\tau_i, \tau_{i+1}]$ of stay of the process x(t), $t \ge 0$, at a state $x \in X$.

Let the quality criterion of transfer process (1) be defined by a function G(y,x,u), $y \in \mathbf{R}^d$, with only one equilibrium point u_x^* on the interval $[\tau_i,\tau_{i+1}]$ that follows from the condition $G(y_x,x,u_x)=0$ or, in general representation (1), the control u(t) is defined by the condition

$$G(y(t),x(t),u(t)) = 0.$$
 (4)

Note that the solution of stochastic equation (1) on the interval $[\tau_i, \tau_{i+1}]$ under the nonrandom control u(t) forms a Markov process.

To find asymptotic properties of the solution of problem (1), (4) in a scheme of series with a small parameter $\varepsilon > 0$, we consider the stochastic equation

$$dy^{\varepsilon}(t) = a(y^{\varepsilon}(t), x(t/\varepsilon))dt + \sigma(y^{\varepsilon}(t), x(t/\varepsilon), u^{\varepsilon}(t))dw(t)$$
(5)

and the procedure of stochastic approximation

$$du^{\varepsilon}(t) = \alpha(t)G(y^{\varepsilon}(t), x(t/\varepsilon), u^{\varepsilon}(t))dt$$
(6)

with the common initial conditions

$$x(0) = x_0, \ y(0) = y_0, \ u(0) = u_0.$$
 (7)

MAIN RESULT

THEOREM 1. Let $a(y,u) \in C(\mathbf{R}^d, \mathbf{R}^d)$, let $\sigma(y,x,u) \in C(\mathbf{R}^d, X, \mathbf{R}^d)$, and let $G(y,x,u) \in C(\mathbf{R}^d, X, \mathbf{R}^d)$. Then, for an arbitrary ε ($\varepsilon < \varepsilon_0$ is sufficiently small), the following weak convergence takes place:

$$(v^{\varepsilon}(t), u^{\varepsilon}(t)) \Rightarrow (\hat{v}(t), \hat{u}(t)), \tag{8}$$

where the limit process $(\hat{y}(t), \hat{u}(t))$ is specified by the generator

$$L\varphi(y,u) = A(y,u)\varphi(y,u) + \frac{1}{2}B(y,u)\varphi(y,x)$$
(9)

with the following representation in terms of test functions $\varphi(y,u) \in C^{3,2}(\mathbf{R}^d,\mathbf{R}^d)$:

$$A(y,u) = a(y)\varphi'_{y}(y,u) + \alpha(t)G(y,u)\varphi'_{u}(y,u),$$
(10)

where
$$a(y) = \int_X a(y,x)\pi(dx)$$
, $G(y,u) = \int_X G(y,x,u)\pi(dx)$, $B(u,y) = \hat{\sigma}^2(y,u)\varphi''_{yy}(y,u)$, and $\hat{\sigma}^2(y,u) = \int_X \sigma^2(y,x,u)\pi(dx)$.

COROLLARY 1. We will describe the limit control process $(\hat{y}(t), \hat{u}(t))$ by the equations

$$d\hat{y}(t) = a(\hat{y}(t))dt + \sigma(\hat{y}(t), \hat{u}(t))dw, \tag{11}$$

$$d\hat{u}(t) = \alpha(t)G(\hat{y}(t), \hat{u}(t))dt. \tag{12}$$

COROLLARY 2. Let us consider the transfer process described in a scheme of series by the stochastic differential equation

$$dy^{\varepsilon}(t) = a(y^{\varepsilon}(t), x(t/\varepsilon), u^{\varepsilon}(t))dt + \sigma(y^{\varepsilon}(t), x(t/\varepsilon), u^{\varepsilon}(t))dw(t)$$

with the control $u^{\varepsilon}(t)$ defined by the equation $du^{\varepsilon}(t) = \alpha(t)G(y^{\varepsilon}(t), x(t/\varepsilon), u^{\varepsilon}(t))dt$ and components $a(y,x,u), G(y,x,u), \sigma(y,x,u) \in C(\mathbf{R}^d, X, \mathbf{R}^d)$.

Then the weak convergence $(y^{\varepsilon}(t), u^{\varepsilon}(t)) \Rightarrow (\hat{y}(t), \hat{u}(t))$ takes place, where the limit process is defined over test functions $\varphi(y, x, u) \in C^{3,0,3}(\mathbf{R}^d, X, \mathbf{R}^d)$ by generator (9), where $A(u, y)\varphi(u, y) = a(y, u)\varphi'_y(y, x) + G(y, u)\varphi'_u(y, u)$, $a(y, u) = \int_X a(y, x, u)\pi(dx)$.

We first establish some properties of the generator of the three-component Markov process $y_t^{\varepsilon} = y_t^{\varepsilon}(t)$, $x_t^{\varepsilon} = x_t^{\varepsilon}(t)$, $u_t^{\varepsilon} = u_t^{\varepsilon}(t)$ defined by the relationship

$$L^{\varepsilon}(y,x)\varphi(y,x,u) = \lim_{\Lambda \to \infty} \frac{1}{\Lambda} E[\varphi(y_{t+\Delta t}^{\varepsilon}, x_{t+\Delta t}^{\varepsilon}, u_{t+\Delta t}^{\varepsilon}) - \varphi(y,x,u) | y_{t}^{\varepsilon} = y; x_{t}^{\varepsilon} = x; u_{t}^{\varepsilon} = u].$$

We introduce the following denotations for the conditional expectation with corresponding decompositions of increments:

$$\begin{split} E_{y,x,u}\varphi(y+\Delta y,x^{\varepsilon}_{t+\Delta},u+\Delta u) \\ = & E[\varphi(y+\Delta y,x^{\varepsilon}_{t+\Delta},u+\Delta u)/\ y^{\varepsilon}_{t} = y;x^{\varepsilon}_{t} = x;u^{\varepsilon}_{t} = u]. \end{split}$$

Since

$$E_{y,x,u}\varphi(y+\Delta y,x_{t+\Delta}^{\varepsilon},u+\Delta u)$$

$$=E_{y,x,u}\varphi\left(y+\int_{t}^{t+\Delta}a(y^{\varepsilon}(s),x)ds+\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s),x,u+\Delta u\right)I(\theta>\varepsilon^{-1}\Delta)$$

$$+E_{y,x,u}\varphi\left(u+\int_{t}^{t+\Delta}a(y^{\varepsilon}(s),x_{t+\Delta}^{\varepsilon})ds+\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x_{t+\Delta}^{\varepsilon},u^{\varepsilon}(s))dw(s),x_{t+\Delta}^{\varepsilon},u+\Delta u\right)I(\theta<\varepsilon^{-1}\Delta)+o(\Delta),$$
(13)

where θ is the sojourn time of the Markov process $x(t), t \ge 0$, at a state x, we have

$$I(\theta > \varepsilon^{-1}\Delta) = 1 - \varepsilon^{-1}q(x)\Delta + o(\Delta), \ I(\theta < \varepsilon^{-1}\Delta) = \varepsilon^{-1}q(x)\Delta + o(\Delta).$$

For the first addend in sum (13), we have

$$\varphi\left(y + \int_{t}^{t+\Delta} a(y^{\varepsilon}(s), x)ds + \int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s))dw(s), x, u + \Delta u\right)$$

$$= \varphi\left(y + \int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s))dw(s), x, u + \Delta u\right),$$

where $v = y + \int_{t}^{t+\Delta} a(y^{\varepsilon}(s), x) ds$.

For the latter representation of the test function with allowance for $\pm \varphi(v, x, u + \Delta u)$, we have

$$\varphi\left(v + \int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s)) dw(s), x, u + \Delta u\right)$$

$$= \varphi'_{y}(v, x, u + \Delta u) \int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s)) dw(s)$$

$$+ \frac{1}{2} \varphi''_{yy}(v, x, u + \Delta u) \left[\int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s)) dw(s)\right]^{2} + \varphi(v, x, u + \Delta u) + o(\Delta). \tag{14}$$

Since

$$\varphi'_{y}(v,x,u+\Delta u) = \varphi'_{y}(v,x,u) + \varphi''_{uy}(v,x,y)\Delta u + o(\Delta)$$

$$= \varphi'_{y}(v,x,u) + \varphi''_{yu}(v,x,u)\alpha(t)G(y,x,u)\Delta + o(\Delta),$$

$$\varphi''_{vv}(v,x,u+\Delta u) = \varphi''_{vv}(v,x,u) + \varphi'''_{vvu}(v,x,u)\alpha(t)G(y,x,u)\Delta + o(\Delta),$$

for function (14), we obtain

$$\varphi\left(v+\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s),x,u+\Delta u\right)$$

$$=\varphi(v,x,u)+\varphi'_{u}(v,x,u)\alpha(t)G(y,x,u)\Delta+o(\Delta)$$

$$+\varphi'_{y}(v,x,u)\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)$$

$$+\alpha(t)\varphi''_{yu}(v,x,u)G(y,x,u)\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)\Delta+o(\Delta)$$

$$+\frac{1}{2}\varphi''_{yy}(v,x,u)\left[\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)\right]^{2}$$

$$+\frac{1}{2}\alpha(t)\varphi'''_{yyu}(v,x,u)\left[\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)\right]^{2}G(y,x,u)\Delta+o(\Delta). \tag{15}$$

Taking into account the representation of the variable v and continuous differentiability of test functions φ , we obtain

$$\varphi(v,x,u) = \varphi\left(y + \int_{t}^{t+\Delta} a(y^{\varepsilon}(s),x)ds,x\right) = \varphi(y,x,u) + \varphi'_{y}(y,x,u)a(y,x)\Delta + o(\Delta).$$

All the components with the variable v have similar representations in representation (15). Therefore, according to representation (15), we obtain

$$\varphi\left(v + \int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s)) dw(s), x, u + \Delta u\right)$$

$$= \varphi(y,x,u) + \varphi'_{v}(y,x,u)a(y,x)\Delta + o(\Delta) + \alpha(t)\varphi'_{u}(y,x,u)G(y,x,u)\Delta$$

$$+o(\Delta)+\varphi'_{y}(y,x,u)a(y,x)\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)\Delta+o(\Delta)$$

$$+\alpha(t)\varphi''_{yu}(y,x,u)G(y,x,u)\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)\Delta+o(\Delta)$$

$$+\frac{1}{2}\varphi''_{yy}(v,x,u)\left[\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)\right]^{2}+o(\Delta)$$

$$+\frac{1}{2}\alpha(t)\varphi'''_{yyu}(v,x,u)\left[\int_{t}^{t+\Delta}\sigma(y^{\varepsilon}(s),x,u^{\varepsilon}(s))dw(s)\right]^{2}G(y,x,u)\Delta+o(\Delta).$$

Since the following relationships hold for conditional expectation:

$$E_{u,x,y} \int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s)) dw(s) = 0,$$

$$E_{y,x,u} \left[\int_{t}^{t+\Delta} \sigma(y^{\varepsilon}(s), x, u^{\varepsilon}(s)) dw(s) \right]^{2} = \sigma^{2}(y, x, u) \Delta + o(\Delta),$$

we obtain

$$E_{y,x,u}[\varphi(y+\Delta y,x_{t+\Delta}^{\varepsilon},u+\Delta u)]$$

$$=\varphi(y,x,u)+[\varphi'_{y}(y,x,u)a(y,x)+\alpha(t)\varphi'_{u}(y,x,u)G(y,x,u)]\Delta$$

$$+\frac{1}{2}\varphi''_{yy}(y,x,u)\sigma^{2}(y,x,u)\Delta-\varepsilon^{-1}q(x)E_{y,x,u}\varphi(y,x,u)\Delta$$

$$+\varepsilon^{-1}qE_{y,x,u}\varphi(y,x_{t+\Delta}^{\varepsilon},u)\Delta+o(\Delta).$$

Thus, for the generator $L^{\varepsilon}(y,x)$, we have

$$\begin{split} L^{\varepsilon}(y,x)\varphi(y,x,u) &= \lim_{\Delta \to 0} \frac{1}{\Delta} \varepsilon^{-1} q(x) E_{y,x,u} [\varphi(y,x_{t+\Delta}^{\varepsilon},u) - \varphi(y,x,u)] \\ &+ \varphi'_{y}(y,x,u) a(y,x) + \alpha(t) \varphi'_{u}(y,x,u) G(y,x,u) + \frac{1}{2} \varphi''_{yy}(y,x,u) \sigma^{2}(y,x,u) \\ &= \varepsilon^{-1} Q \varphi(y,x,u) + \varphi'_{y}(y,x,u) a(y,x) + \alpha(t) \varphi'_{u}(y,x,u) G(y,x,u) \\ &+ \frac{1}{2} \varphi''_{yy}(y,x,u) \sigma^{2}(y,x,u). \end{split}$$

We will formulate the above reasoning in the form of the following statement. **LEMMA 1.** The representation of the generator of the three-component Markov process

$$y_t^{\varepsilon} := y^{\varepsilon}(t), \ x_t^{\varepsilon} := x(t/\varepsilon), \ u_t^{\varepsilon} := u^{\varepsilon}(t), \ t \ge 0,$$

in terms of test functions $\varphi(y,x,u) \in C^{3,0,2}(\mathbf{R}^d,X,\mathbf{R}^d)$ is as follows:

$$L^{\varepsilon}(y,x)\varphi(y,x,u) = \varepsilon^{-1}Q\varphi(y,x,u) + L(x)\varphi(y,x,u), \tag{16}$$

where

$$L(x)\varphi(y,x,u) = \varphi'_{y}(y,x,u)a(y,x) + \alpha(t)\varphi'_{u}(y,x,u)G(y,x,u) + \frac{1}{2}\varphi''_{yy}(y,x,u)\sigma^{2}(y,x,u).$$

LEMMA 2. The solution of the problem of a singular perturbation for generator (16) in terms of test functions $\varphi^{\varepsilon}(y,x,u) = \varphi(y,u) + \varepsilon \varphi_1(y,x,u)$ defines the limit generator $L\varphi(y,u) = L_y\varphi(y,u) + L_u\varphi(y,u)$, where $L_y\varphi(y,u) = a(y)\varphi'_y(y,u) + \frac{1}{2}\sigma^2(y,u)\varphi''_{yy}(y,u)$, $L_u\varphi(y,u) = \alpha(t)G(y,u)\varphi'_u(y,u)$, $a(y) = \int_X a(y,x)\pi(dx)$, $G(y,u) = \int_X G(y,x,u)\pi(dx)$, and $\sigma^2(y,u) = \int_X \sigma^2(y,x,u)\pi(dx)$.

Proof. Consider the representation

$$L^{\varepsilon}(y,x)\varphi^{\varepsilon}(y,x,u) = \varepsilon^{-1}Q\varphi(y,u) + Q\varphi_{1}(y,x,u) + L(x)\varphi(y,u) + \varepsilon L(x)\varphi_{1}(y,x,u),$$

where

$$L(x) = \varphi'_{y}(y,u) a(y,x) + \alpha(t) G(y,x,u) \varphi'_{u}(y,u) + \frac{1}{2} \sigma^{2}(y,x,u) \varphi''_{yy}(y,u)$$

with the remainder in the form $\theta(x) = L(x)\varphi_1(y,x,u) = \theta_y(x) + \theta_u(x)$.

We write the expression $\varphi_1(y,x,u)$ in the form

$$\varphi_1(y,x,u) = R[L-L(x)]\varphi(y,u) = R_0\widetilde{L}(x)\varphi(y,u),$$

where

$$\widetilde{L}(x) = \widetilde{a}(y,x)\varphi'_{y}(y,u) + \alpha(t)\widetilde{G}(y,x,u)\varphi'_{u}(y,u) + \frac{1}{2}\widetilde{\sigma}^{2}(y,x,u)\varphi''_{yy}(y,u),$$

$$\widetilde{a}(y,x) = a(y) - a(y,x), \ \widetilde{G}(y,x,u) = G(y,u) - G(y,x,u),$$

$$\widetilde{\sigma}^{2}(y,x,u) = \sigma^{2}(y,u) - \sigma^{2}(y,x,u).$$

Thus, for the remainder terms $\theta_v(x)$ and $\theta_u(x)$, we have

$$\theta_{y}(x) = a(y,x)R_{0}[\widetilde{a}(y,x)\varphi'_{y}(y,u)]'_{y} + \frac{1}{2}a(y,x)R_{0}[\widetilde{\sigma}^{2}(y,x,u)\varphi''_{yy}]'_{y}$$

$$+ \frac{1}{2}\sigma^{2}(y,x,u)R_{0}[\widetilde{a}(y,x)\varphi'_{y}(y,u)]''_{yu} + \frac{1}{4}\sigma^{2}(y,x,u)R_{0}[\widetilde{\sigma}^{2}(y,x,u)\varphi''_{yy}(y,u)]'_{yu},$$

$$\theta_{u}(x) = \alpha(t)a(y,x)R_{0}[\widetilde{G}(y,x,u)\varphi'_{u}(y,u)]'_{u} + \alpha(t)G(y,x,u)R_{0}[\widetilde{a}(y,x)\varphi'_{y}(y,u)]'_{u}$$

$$+ \frac{1}{2}\alpha(t)G(y,x,u)R_{0}[\widetilde{\sigma}^{2}(y,x,u)\varphi''_{yu}(y,u)]'_{u} + \frac{1}{2}\alpha(t)\sigma^{2}(y,x,u)R_{0}[\widetilde{G}(y,x,u)\varphi'_{u}(y,u)]'_{yy}$$

$$+ \alpha^{2}(t)G(y,x,u)R_{0}[\widetilde{G}(y,x,u)\varphi'_{u}(y,u)]'_{u}.$$

By the Korolyuk theorem [7], $L_y \varphi(y, u)$ defines a limit diffusion process that satisfies the equation $d \hat{y}(t) = a(\hat{y})dt + \sigma(\hat{y}, \hat{u})dw(t)$ with the following control:

$$d\hat{u} = \alpha(t)G(\hat{v}, \hat{u}(t))dt$$
.

Proof of Theorem 1. The statement of Theorem 1 follows from the Korolyuk model theorem [7] and the result of Lemma 2.

THEOREM 2. Let the Lyapunov function V(y,u) of the averaged system $\frac{\partial u}{\partial v} = G(y,u)$ be such that it satisfies the following conditions:

Y1:
$$G(y,u)V'(y,u) < -cV(y,u)$$
,
Y2: $|a(y,x)R_0[\widetilde{G}(y,x,u)V'_u(y,u)]'_y| \le c_1V(y,u)$,
 $|G(y,x,u)R_0[\widetilde{a}(y,x)V'_y(y,u)]'_u| \le c_2V(y,u)$,
 $|G(y,x,u)R_0[\widetilde{\sigma}^2(y,x,u)V''_{yu}(y,u)]'_u| \le c_3V(y,u)$,
 $|\sigma^2(y,x,u)R_0[\widetilde{G}(y,x,u)V'_u(y,u)]''_{yy}| \le c_4V(y,u)$,
 $|G(y,x,u)R_0[\widetilde{G}(y,x,u)V'_u(y,u)]'_u| \le c_5(1+V(y,u))$.

Next, let the function $\alpha(t)$ be such that $\int\limits_0^\infty \alpha(t)dt = \infty$, $\int\limits_0^\infty \alpha^2(t)dt < \infty$. Then, for $\varepsilon > 0$ and $\varepsilon \le \varepsilon_0$, where ε_0 is sufficiently small, the convergence $P\bigg\{\lim_{t\to\infty} u(t) = u^*\bigg\} = 1$ takes place.

Proof. Consider now the generator of limit control $L_u^{\varepsilon}V(y,u) = L_uV(y,u) + \varepsilon\theta_u(x)$ for which we obtain the following estimate from conditions Y1 and Y2:

$$L_u^{\varepsilon}V(y,u) \leq -c\alpha(t)V(y,u) + c * \alpha^2(t)(1+V(y,u))$$

that implies the statement of Theorem 2 by the theorem considered in [3].

CONCLUSIONS

The asymptotic value of the control u^* allows one to consider fluctuations of a deviation of the control u(t) from u^* and also to establish its basic characteristics.

REFERENCES

- 1. I. I. Gikhman and A. V. Skorokhod, Controlled Random Processes [in Russian], Naukova Dumka, Kiev (1977).
- 2. J. Jacod and A. N. Shiryaev, Limit theorems for Random Processes [Russian translation], Vol. 1, Fizmatgiz, Moscow (1994).
- 3. M. B. Nevelson and R. Z. Khasminskii, Stochastic Approximation and Recursive Estimation [in Russian], Nauka, Moscow (1972).
- 4. V. B. Kolmanovskii, "Problems of optimal estimation," Soros Educational Journal, No. 11, 122-127 (1999).
- 5. A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations [in Russian], Naukova Dumka, Kiev (1987).
- 6. V. S. Korolyuk and N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific, London–Singapore-Hong Kong (2005).
- 7. V. S. Korolyuk, Stochastic Models of Systems [in Ukrainian], Naukova Dumka, Kyiv (1989).
- 8. U. T. Khimka and Ya. M. Chabanyuk, "A difference stochastic optimization procedure with impulse perturbation," Cybernetics and Systems Analysis, 49, No. 3, 768–773 (2013).