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ASYMPTOTIC PROPERTIES OF A STOCHASTIC
DIFFUSION TRANSFER PROCESS WITH

AN EQUILIBRIUM POINT OF A QUALITY
CRITERION

A. V. Nikitin UDC 519.21+62

Abstract. Weak convergence conditions are obtained for a diffusion transfer process with Markov
switchings and a control with an equilibrium point of quality criterion functions. A procedure is
constructed for the stochastic approximation of such a point in a scheme of series.

Keywords: stochastic diffusion equation, generator on a Banach space, Markov process, stochastic
approximation procedure.

INTRODUCTION

A random evolution in the form of a diffusion process with a control determined by the condition of reaching the
extremum of a quality criterion function was studied in [1, 2]. A particular case is the existence of an equilibrium point of
the quality criterion used in many applied optimal estimation problems [3, 4]. The problem of asymptotic behavior of
systems under random disturbances [5] is independently considered. The latter problem was investigated using a small
parameter in schemes of series and diffusion approximation [6]. To prove important statements, the Korolyuk model
theorem [7] is used. In [8], a continuous procedure of stochastic optimization under the direct influence of a Markov process
on regression functions and a pulse disturbance in a diffusion approximation scheme are considered.

This article considers the convergence of a diffusion transfer process with Markov switchings and a control with an
equilibrium point of the quality criterion function for which a procedure of stochastic approximation in a scheme of series is
constructed.

PROBLEM STATEMENT

Let a transfer process y(t)eRd be defined by the stochastic differential equation

dy(t) = a(y(t),x(1))dt +0(y(2),x(1),u(t))dw(t), (M

where x(¢), t >0, is a uniformly ergodic Markov process defined by the generator
0p(x) = g(x) [ P(x,d)p( ) ~(x)] 2)
X

in a measurable phase space (X,X) [6] on the Banach space B(X) of real-valued bounded functions ¢(x) with the
supremum norm

()l [= sup [p(x)|.
xeX

Kamianets-Podilskyi Ivan Ohienko National University, Kamianets-Podilskyi, Ukraine, nik tol@rambler.ru.
Translated from Kibernetika i Sistemnyi Analiz, No. 4, pp. 169-175, July—August, 2015. Original article submitted
October 6, 2014

650 1060-0396/15/5104-0650 ©2015 Springer Science+Business Media New York



The generator Q is reducibly inverse on B(.X ) with the projector ITp(x):= _[ 7t (dx )p(x), where w(B) (B € X) is the
X
stationary distribution of the Markov process x(¢), ¢>0; this distribution is found from the relationships
w(dx)g(x)=qp(dx), g = In(dx)q(x) (p (dx) is the stationary distribution of the embedded Markov chain x,,, n > 0), and the
X

potential R of the Markov semigroup Ry =I1-[Q+ H]_l.
The functions a(y,x)=(a; (y,x),k=1Ld)and 6(y,x,u)= (04 (y,x,u),k=1,d), yeRY, xe X, satisfy the conditions

of existence of a global solution of the evolution equations
dy,(t)=a(y,(t),x)dt +0o(y,(t),x,u,(t))dw(t), xeX, 3)

for each fixed value of x of the Markov process x(¢), ¢ 20, in an interval [7;,7;,] of stay of the process x(¢), t 20, at
a state x e X.
Let the quality criterion of transfer process (1) be defined by a function G(y,x,u), y € RY , with only one equilibrium

point u; on the interval [7;,7,, ] that follows from the condition G(y,,x,u,)=0 or, in general representation (1), the

control u(t) is defined by the condition

G((1),x(),u(t))=0. (4)

Note that the solution of stochastic equation (1) on the interval [z;,7,, ;] under the nonrandom control u(#) forms
a Markov process.

To find asymptotic properties of the solution of problem (1), (4) in a scheme of series with a small parameter & >0,
we consider the stochastic equation

dv® (t)=a(y® (t),x(t/e))dt +a(y° (¢),x(t/ €),u’ (t))dw(t) ©)
and the procedure of stochastic approximation
du® (t)=a(t)G(y® (t),x(t/€),u® (t))dt (6)
with the common initial conditions

x(0)=xg, M0)=yo, u(0)=uy. (7

MAIN RESULT

THEOREM 1. Let a(y,u)eC(RY, R?), let o(y,x,u)eC(R?, X,R?), and let G(y,x,u)e C(RY, X,R?).

Then, for an arbitrary ¢ (e <eg( is sufficiently small), the following weak convergence takes place:

(V) u® ()= (3(1),a(1)), (®)
where the limit process (3(¢),u(t)) is specified by the generator
_ 1 )
Lgo(y,u)— A(yau)‘P(J’a”)""EB(J’»“)‘P(J’J)
with the following representation in terms of test functions ¢(y,u)eC 3.2 (Rd, R ):
A(y,u)=a(y)p', (y.u)+at)a(y,u)p, (y.u), (10)

where a(y)= [ a(y,x)yr(dx), G(y,u)= [ G(y,x,u)(dx), B(u, y) =62 (y,u)ply, (y,u), and 62 (y,u)= [ 0 (y,x,u)m(dx).
X X X
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COROLLARY 1. We will describe the limit control process (3(z),u(t)) by the equations
dy(t)=a(y(1))dt+o(y(1),u(t))dw, (1)

di(t) =a()G(¥ (1), a(t))dt. (12)

COROLLARY 2. Let us consider the transfer process described in a scheme of series by the stochastic differential
equation

ady ()=a(¥e (), x(t/&),uf (t))dt+0(y° (), x(t/ &), u® (¢))dw(t)

with the control u®(z) defined by the equation duf(¢)=a(t)G(y®(t),x(t/¢e),u®(t))dt and components
a(y,x,u),G(y,x,u),o(y,x,u) € C(Rd ,X,Rd ).

Then the weak convergence (y° (¢), u® (t))=> (3(t), @i(t)) takes place, where the limit process is defined over test
functions p(y,x,u)eC>%? (RY, X,R?) by generator (9), where A(u, )p(u, y)=a(y,u)p',(y,x)+G(y,ulp), (v,u),
a(y,u) = [ a(y,x,upw(dy).

X

We first establish some properties of the generator of the three-component Markov process yf = yf (¢), x{ =x? (¢),

u; =ut (¢) defined by the relationship
.1
L (3, )p(y,x,u) = lim ZE[<p(yf+At,xf+At,uf+At)—w(y,x,u)lyf = yix; =xup =ul.
o0

We introduce the following denotations for the conditional expectation with corresponding decompositions of
increments:

Ey,x,u‘p(y“'Ay,x;_A su+Au)
=E[p(y+Ay,x;, su+Au)/ y; =y;x{ =xuf =u].

Since
Ey,x,u <P(y+Ay,xf+A Ju+Au)
t+A t+A
=E x| v+ [a(y® ()x)ds+ [o(5° ()50 ()dw(s),x,u+Au |[(0>e7'A)

t t
t+A t+A

+Ey’x’u<p(u+ [ a(y® (s).x5, s+ J.G(ys(s),forA,ue(s))dw(s),x;A,u+Au)jI(9 <e 1A +o(A),  (13)
t t

where 6 is the sojourn time of the Markov process x(¢),t>0, at a state x, we have
10> 'A)=1-¢""g(x)A+0(A), I1(0<e ' A)=e"g(x)A+0(A).
For the first addend in sum (13), we have

t+A t+A
<p[y+ I a(y®(s),x)ds+ J- o(¥E (s),x,u’ ())dw(s),x,u+ Au]
t t

t+A
= (p[v+ j o(¥E (s),x,u’ ())dw(s),x,u+ Au] ,

t
t+A

where v=y+ ja(yg (s),x)ds.
t
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For the latter representation of the test function with allowance for t¢(v,x,u+ Au), we have

t+A

<p{v+ _[ o(¥E (s),x,u’ ())dw(s),x,u+ AuJ

t
t+A

=", (v, x,u+Au) I o(¥ (8),x,u’ (5))dw(s)

t

2
t+A
+%<p')'}y (v,x,u+Au){ J (¥ (s),x,u’ (s))dw(s)] + o(v,x,u+Au)+o(A). (14)
t

Since
@' (v,x,ut+Au) =@, (v,x,u)+ @), (v,x, y)Au+o(A)

=@, (v,x,u)+ @', (v, x,u)a(t)G(p,x,u)A+o(A),

e

(p’)'/y(v:x7u+Au):(pfy’y (Vaxau)+(pyyu (v,x,u)a(l)G(y,x,u)A+O(A),
for function (14), we obtain

t+A
ol v+ IU(ys(s),x,ug(s))dw(s),x,u+Au
t

=p(v,x,u)+ ¢, (v,x,u)a(t)G(y,x,u)A+o(A)

t+A
+p), (v,x,u) I a(¥%(s),x,u’ (s))dw(s)
t

t+A

+ a(t)fp'y'u v, x,u)G(y,x,u) I o(¥E (s),x,u’ (s))dw(s)A+o(A)
t

t+A 2
+%g0;,'y (v,x,u){ J o(y¢(s),x,u’ (s))dw(s)]

t

t+A 2
+%a(t)g03,'y'u (v,x,u)[ I o(y® (s),x,ug(s))dw(s)} G(py,x,u)A+o0(A). (15)
t

Taking into account the representation of the variable v and continuous differentiability of test functions ¢, we obtain

t+A
w(v,x,u):so[w f a(y* (s),x)ds,XJ =p(y,x,u)+ ¢, (y,x,u)a(y,x)A+o(A).
t

All the components with the variable v have similar representations in representation (15). Therefore, according to
representation (15), we obtain

t+A
<p{v+ J o(¥F (s),x,u’ ())dw(s),x,u+ Au]

t

=p(y.x,u)+ ¢, (y:x,u)a(y,x)A+ o(A)+a(t)p), (y,x,u)G(y,x,u)A

653



t+A
+o(A)+ @), (y,x,u)a(y,x) f o(¥° (8),x,u” (5))dw(s)A+0(A)
t

t+A
+a(t )(p'y’u (y,x,u)G(y,x,u) J G(y‘S (s),x,us (8))dw(s)A+o(A)
t
t+A

2
+%(p'y'y (v,x,u){ J o(¥® (s),x,u’ (S))dW(S)] + o(A)

t

2
t+A
+%a(t)<p'y');u (v,x,u)[ j o(¥®(s),x,u’ (s))dw(s)] G(y,x,u)A+o(A).
t

Since the following relationships hold for conditional expectation:

t+A
Eyy | 00 (8).%.u (5))dw(s) =0,
t

t+A 2
Ey{ [ o(* (). (s))dw(s)] = 0% (pxu)A+o(A),
we obtain t

Ey,x,u[‘p(y+Ayaxf+A s u+Au)]
=p(p,x,u)+[¢", (y,x,u)a(y,x)+a(t)py, (y,x,u)G(,x,u)]A
1, _
+5‘Pyy(y,x,u)02(y,xyu)A—8 lq(x)Ey,x,u(p(ysxau)A
+e T qE o p(y.x5, A+ 0(A).

Thus, for the generator I°(y,x), we have

£ 1 I &
L (ropp(r 5, = lim e gOIE o [0(0:37, 1) =p(3o)]

14 14 1 rr
+ @y (rr0a(p )+ @y (1 0Gx)+- @l (y,x,u)0 % (y,%,u)
=& 0p(y.x.u)+ ', (y.xu)a(y,x)+a(t p}, (y.x,u)G(p,x,1)
| R 2
+E(pyy (y,x:u)a (yaxau)'

We will formulate the above reasoning in the form of the following statement.
LEMMA 1. The representation of the generator of the three-component Markov process

yii=y0(t), xji=x(t/€), u:=u®(t), t=0,
in terms of test functions <p(y,x,u)eC3’0’2(Rd, X,Rd) is as follows:

L (7, p(y,x,u) =€ Qp(y,x,u)+ L(x) p( %, 1), (16)

654



where
L )p(y,x,u) =@, (,x,u)a(y,x)+alt)p, (y,x,u)G(y,x,u)

L, 2
+5(pyy (yaxyu)a (an,“)-

LEMMA 2. The solution of the problem of a singular perturbation for generator (16) in terms of test functions
¢° (yx.tt) = p(v,u)+ ey (y.x,u) defines the limit generator Lp( y,u) = Lyp(yu)+ Lp( you), where Lop(y,u)=a(y)p'y (v.u)

+%a2 )y (o), Lp(vou) = ()G ()l (o), a(y)= [ a(y.x)a(dx), G(y,u) = [ G(yx,up(dx), and 02 (v,u)
X X

= [0? (rxup(ax).
X
Proof. Consider the representation

Ls (y,x)(pé’ (yax’u) :SilQ(p(yau)_"Q(pl (yaxau)+L(x)(p(y’u)+8L(x)(pl (y,x,u),

where
’ ’ 1 r
L) =), (30) a(36) + @) G100} () +5.0° (vl ()

with the remainder in the form 0(x)=L(x)p;(y,x,u)=0 ,(x)+0,(x).
We write the expression ¢;(y,x,u) in the form

@1(x,u) = R[L—L(x)]p(y,u) = RoL(x)p(y,u),

where !
L=yl (va0)+ ) Glrxa0)p), (o) + 53 (sl (),

5(y:x):a(y)_a(y7x)7 (N}(y,x,u)=G(y,u)—G(y,x,u),
52()/,x,u)=02 (y,u)—(72 (y,x,u).

Thus, for the remainder terms 6, (x) and 6, (x), we have

0y () =aly R (G XYy ()l + Ay DR 57 (gl Ty
2 02 (oA (1] 0 (iR L3 (gl ()T
0,,(x) =)y, )Ry [G(y.x, ), (), + A(OIG(px, )Ry [, X)) ()],
+%0!(t)G(y,xau)Ro[52 (yx,uly (3,0)], +§oc(t>a2 (3.2, R [G(3,x,u)py, ()]}

+a? (1)G(y,%,u)Ro [G(y,x,u)p)y (y,u)],,.

By the Korolyuk theorem [7], L,p(y,u) defines a limit diffusion process that satisfies the equation
d y(t)=a(y)dt+o(y,u)dw(t) with the following control:

div=a(t)G(3, i(t))dt.

Proof of Theorem 1. The statement of Theorem 1 follows from the Korolyuk model theorem [7] and the result
of Lemma 2.
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THEOREM 2. Let the Lyapunov function V' ( y,u) of the averaged system % =G(y,u) be such that it satisfies the
following conditions:
Y1: G(y,u)V'(y,u)<—cV(y,u),
Y2: |a(y.x)Ro[G(y.x, )V (v.u)] | SV (y.u),
IGCyax R [@(3, )V} (v |SeaV (v

G(y.x, )R [T (y,x,u)V iy, (vau)], | S 3V (you),
|02 (3,2, )R[G(y.x,u )V ()]} | < cqV (3,00),

|Gy, x,w)RO [G(y,x,u)V (yow)],, < s (14 (y,u).

o0 o0
Next, let the function a(z) be such that ja(t)dt =00, Iaz (t)dt <oo. Then, for €>0 and € <¢(, where g is
0 0

sufficiently small, the convergence P{ lim u(t):u*} =1 takes place.
t—®

Proof. Consider now the generator of limit control L:V (y,u)= L,V (y,u)+¢&6, (x) for which we obtain the following

estimate from conditions Y1 and Y2:
Ly (yu)<—ca(tW (y.u)+c*a® () (1+V (y,u))

that implies the statement of Theorem 2 by the theorem considered in [3].

CONCLUSIONS

The asymptotic value of the control #™ allows one to consider fluctuations of a deviation of the control u(¢) from u*

and also to establish its basic characteristics.
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