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Abstract

Let (ξ1, η1), (ξ2, η2), . . . be independent identically distributed R2-valued random vec-
tors. Assuming that ξ1 has zero mean and finite variance and imposing three distinct
groups of assumptions on the distribution of η1 we prove three functional limit theo-
rems for the logarithm of convergent discounted perpetuities

∑
k≥0 e

ξ1+...+ξk−akηk+1

as a→ 0+. Also, we prove a law of the iterated logarithm which corresponds to one of
the aforementioned functional limit theorems. The present paper continues a line of
research initiated in the paper Iksanov, Nikitin and Samoillenko (2022), which focused
on limit theorems for a different type of convergent discounted perpetuities.
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1 Introduction

Let (ξ1, η1), (ξ2, η2), . . . be independent copies of an R2-valued random vector (ξ, η)

with arbitrarily dependent components. Denote by (Sk)k∈N0
(as usual, N0 := N∪{0}) the

standard random walk with jumps ξk defined by S0 := 0 and Sk := ξ1 + . . .+ ξk for k ∈ N.
Whenever a random series

∑
k≥0 eSkηk+1 converges almost surely (a.s.), its sum is called

perpetuity because of the following financial application. Assuming temporarily that η
is a.s. positive, the variables ηk+1 and eξk may be interpreted as the planned payoff of
a private pension fund to a client and the discount factor for year k ∈ N0, respectively.
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Limit theorems for perpetuities

The pension payoffs to a client are made at the beginning of each year. The variable∑
k≥0 eSkηk+1 can be thought of as a perpetuity, that is, the present value of a permanent

commitment to make a payoff annually into the future forever. In other words, this is
the initial payment to a fund and, for k ∈ N0, eSkηk+1 is an amount ensuring that a client
gets the planned payoff ηk+1 at the beginning of year k ∈ N0.

It is known (see Lemma 1.7 in [20] or Theorem 2.1 in [11]) that the conditions Eξ ∈
[−∞, 0) and E log+ |η| <∞ ensure that the series

∑
k≥0 eSkηk+1 (absolutely) converges

a.s. Recall that log+ x = log x if x ≥ 1 and = 0 if x ∈ (0, 1). Further detailed information
on perpetuities, accumulated up to 2016, can be found in the books [6] and [12].

1.1 Previously investigated discounted perpetuities

There are several ways to define a discounted convergent perpetuity. One option is

X(b) :=
∑
k≥0

bSkηk+1, b ∈ (0, 1)

or equivalently
∑
k≥0 e−Sk/tηk+1 for t > 0. In the recent article [14] basic limit theorems

for X(b), properly normalized, as b → 1−, were proved, namely, a strong law of large
numbers, a functional central limit theorem and a law of the iterated logarithm. To
be more specific, we state a combination of Theorem 1.2 and one part of Theorem 1.5
in [14] as Proposition 1.1. Denote by C = C(0,∞) the space of continuous functions
defined on (0,∞) equipped with the locally uniform topology. Throughout the paper we
write =⇒ to denote weak convergence of probability measures in a function space.

Proposition 1.1. Assume that µ = Eξ ∈ (0,∞), Eη = 0 and s2 := Var η ∈ (0,∞). Then,
as b→ 1−, (

(1− b2)1/2X(bu)
)
u>0

=⇒ (2s2µ−1)1/2

(∫
[0,∞)

e−uydB(y)

)
u>0

(1.1)

on C, where (B(t))t≥0 is a standard Brownian motion, and

lim sup (lim inf)b→1−

( 1− b2

log log 1
1−b2

)1/2
X(b) = +(−)(2s2µ−1)1/2 a.s. (1.2)

Note that in the cited Theorem 1.2 weak convergence was stated on the Skorokhod
space D(0,∞) of càdlàg functions on (0,∞) equipped with the J1-topology. Since the
process on the left-hand side of (1.1) is a.s. continuous in u, the weak convergence
also takes place on C. Corollary 1.5 in [13] is an ultimate version of the functional
central limit theorem for X(b) in the case Var ξ < ∞ and s2 < ∞, which particularly
strengthens (1.1). In [13], the condition Eη ∈ R is allowed, which is a new aspect in
comparison to (1.1).

In both (1.1) and (1.2), the random walk (Sk) only provides a first-order contribution
to the limit which is represented by the strong law of large numbers limk→∞ k−1Sk = µ

a.s. In other words, the limits remain unchanged when replacing Sk on the left-hand
sides with µk; see Theorem 1.1 in [5] for the corresponding counterpart of (1.2). The
limit relations (1.1) and (1.2) are mainly driven by fluctuations of the random walk
(η1 + . . .+ ηn) as n becomes large. More precisely, the main driving forces behind (1.1)
and (1.2) are the Donsker functional limit theorem and the law of the iterated logarithm
for (η1 + . . .+ ηn), respectively.

1.2 New type of discounted perpetuities and main results
Our standing assumptions throughout the paper are: η is a.s. positive, E log+ η <∞

and
Eξ = 0 and σ2 := Var ξ ∈ (0,∞). (1.3)
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Limit theorems for perpetuities

We shall investigate
Y (a) :=

∑
k≥0

eSk−akηk+1, a > 0,

which is yet another type of discounted convergent perpetuity, and an accompanying
process

Z(a) := sup
k≥0

(Sk − ak + log ηk+1), a > 0.

By Theorem 2.1 in [11], the latter series converges a.s., that is, the perpetuity is in-
deed convergent. This implies that limk→∞(Sk − ak + log ηk+1) = −∞ a.s., whence
|Z(a)| < ∞ a.s. for each a > 0. Specifically, we shall prove functional limit theorems
for (log Y (au))u>0, properly normalized, as a → 0+ and a law of the iterated loga-
rithm for log Y (a), again properly normalized. Note that lima→0+

∑
k≥0 eSk−akηk+1 =∑

k≥0 eSkηk+1 = +∞ a.s. Here, noting that our assumptions entail P{η + eξc = c} < 1

for all c ∈ R, the a.s. divergence is justified by Theorem 2.1 in [11]. Thus, some
normalizations are indeed needed in our limit theorems.

The presence of the logarithm already shows that the limit theorems for X(b) and
Y (a) are of different nature. It will follow from our proofs that the functional limit
theorems for Y (a) are driven by heavy-traffic limit theorems for Z(a) as a → 0+. The
sequence (Sk − ak + log ηk+1)k∈N0

is a globally perturbed random walk; see [12] for a
survey. The asymptotics of its supremum depend heavily upon the interplay between
the asymptotic growth of (Sk − ak)k∈N0

and that of (log ηj)j∈N. This fact leads to three
different functional limit theorems stated in Theorems 1.2, 1.4 and 1.7. We note in
passing that the one-dimensional distributional convergence of supk≥0(Sk−ak) as a→ 0+,
properly normalized, is well-understood for the random walks (Sk)k∈N0

attracted to a
centered stable Lévy process; see [18] and references therein. Also, we mention that the
one-dimensional distributional convergence of supk≥0(log ηk+1−ak), properly normalized,
as a→ 0 was investigated in [8]; see, in particular, Theorem 7 therein.

Similarly, the law of the iterated logarithm for log Y (a) stated in Theorem 1.8 is a
consequence of the law of the iterated logarithm for max0≤k≤n (Sk + log ηk+1), properly
normalized, as n→∞ and a previously known deterministic continuity result recalled in
Proposition 4.1.

With the aforementioned financial interpretation, the variable Y (a) is a perpetuity
with a discount factor for year k being equal to eξk−a. It is natural to call −(Eξ − a) = a

the average rate of exponential wealth growth. Thus, our limit theorems describe the
fluctuations of the perpetuity, when the average rate of exponential wealth growth
approaches 0 while staying positive.

We are ready to formulate our main results.

1.2.1 Weak convergence

According to Lemma 2.2, the processes(
Z(au)

)
u>0

and
(

log Y (au)
)
u>0

are a.s. continuous. This enables us to formulate functional limit theorems in C.
We start with simpler situations in which the asymptotic behavior of the discounted

convergent perpetuity is driven by either fluctuations of (Sk − ak)k∈N0 (Theorem 1.2) or
(log ηj)j∈N (Theorem 1.4).

Theorem 1.2. Suppose that (1.3) holds and

lim
t→∞

t2P{log η > t} = 0. (1.4)
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Limit theorems for perpetuities

Then (
aZ(au)

)
u>0

=⇒
(

sup
s≥0

(σB(s)− us)
)
u>0

, a→ 0+ (1.5)

and (
a log Y (au)

)
u>0

=⇒
(

sup
s≥0

(σB(s)− us)
)
u>0

, a→ 0+ (1.6)

on C, where B is a standard Brownian motion.

Remark 1.3. The limit process in Theorem 1.2 is the Legendre-Fenchel transform of
s 7→ −σB(s)1[0,∞)(s), s ∈ R evaluated at −u < 0. In particular, it is a.s. convex (as a
function of u), hence a.s. continuous. Similarly, the converging process in (1.5) can be
thought of as a discrete version of the Legendre-Fenchel transform. These observations
are implicitly used in the proof of Lemma 2.2 below when showing the a.s. convexity of
the processes involved.

For positive γ and ρ, let N (γ, ρ) :=
∑
k ε(t(γ, ρ)k , j

(γ, ρ)
k )

be a Poisson random measure

on [0,∞)× (0,∞] with intensity measure LEB× µγ, ρ, where ε(t, x) is Dirac measure at
(t, x) ∈ [0,∞)× (0,∞], LEB is Lebesgue measure on [0,∞), and µγ, ρ is the measure on
(0,∞] defined by

µγ, ρ
(
(x,∞]

)
= γx−ρ, x > 0.

Theorem 1.4. Suppose that (1.3) holds and that the function t 7→ P{log η > t} is
regularly varying at ∞ of index −β, β ∈ (1, 2]. If β = 2, assume additionally that
limt→∞ t2P{log η > t} = ∞. Let b and c be arbitrary positive functions which satisfy
limt→∞ tP{log η > b(t)} = 1 and b(c(a)) ∼ ac(a) as a→ 0+. Then( 1

ac(a)
Z(au)

)
u>0

=⇒
(

sup
k

(
− ut(1, β)k + j

(1, β)
k

))
u>0

, a→ 0+ (1.7)

and ( 1

ac(a)
log Y (au)

)
u>0

=⇒
(

sup
k

(
− ut(1, β)k + j

(1, β)
k

))
u>0

, a→ 0+ (1.8)

on C.

Remark 1.5. One can choose b as an asymptotic inverse of t 7→ 1/P{log η > t}. By
Theorem 1.5.12 in [3], such functions exist and are regularly varying at∞ of index 1/β.
In the role of t 7→ c(1/t) one can take an asymptotically inverse function of t 7→ t/b(t).
Another appeal to Theorem 1.5.12 in [3] enables us to conclude that t 7→ c(1/t) is
regularly varying at∞ of index β/(β − 1). Hence, a 7→ c(a) is regularly varying at 0+ of
index −β/(β − 1). In particular, if P{log η > t} ∼ κt−β as t → ∞ for some κ > 0, then
c(a) ∼ κ1/(β−1)a−β/(β−1) as a→ 0+. For later use, we note that

lim
a→0+

a2c(a) =∞. (1.9)

This is obvious when β ∈ (1, 2) and follows from

a2c(a) ∼ a2c2(a)P{log η > b(c(a))} ∼ (ac(a))2P{log η > ac(a)} → ∞, a→ 0+

when β = 2.
As we shall see in Proposition 2.1; see formula (2.3) below, for each u > 0, supk

(
−

ut
(1, 1)
k + j

(1, 1)
k

)
= +∞ a.s. This explains the fact that Theorem 1.4 is not applicable in

the situations in which E log+ η < ∞ and t 7→ P{log η > t} is regularly varying at ∞ of
index −1.
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Limit theorems for perpetuities

Remark 1.6. Observe that, under the assumptions of Theorem 1.2, both (1.5) and (1.6)
remain true when replacing η with 1 and that, under the assumptions of Theorem 1.4,
both (1.7) and (1.8) remain true when replacing ξ with 0. We think this (obvious)
observation facilitates the understanding of Theorems 1.2 and 1.4.

If in addition to (1.3) the condition

P{log η > t} ∼ λt−2, t→∞, (1.10)

holds for some λ > 0, then the contributions of max0≤k≤n Sk and max1≤k≤n+1 log ηk to
the asymptotic behavior of max0≤k≤n(Sk+log ηk+1) are comparable. This situation which
is more interesting than the other two is treated in the following result.

Theorem 1.7. Suppose that (1.3) and (1.10) hold. Then(
aZ(au)

)
u>0

=⇒
(

sup
k

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

))
u>0

, a→ 0+ (1.11)

and(
a log Y (au)

)
u>0

=⇒
(

sup
k

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

))
u>0

, a→ 0+ (1.12)

on C, where B is a standard Brownian motion independent of N (λ, 2).

1.2.2 A law of the iterated logarithm

We shall now turn to the a.s. asymptotic behavior of log Y (a). The first part of the
following theorem is a law of the iterated logarithm for log Y (a) which corresponds to
the distributional convergence of Theorem 1.2. The second part is a law of the iterated
logarithm for the closely related random variables log

∫∞
0

eB(s)−asds, where a > 0 and B
is a standard Brownian motion. These variables and their appearance will be discussed
in details in Section 1.3 below.

Theorem 1.8. (a) Suppose that (1.3) holds and

E

(
(log+ η)2

log log(log+ η)
1{log+ η>e}

)
<∞. (1.13)

Then

lim supa→0+

2a log Y (a)

log log(1/a)
= σ a.s. (1.14)

(b) Let B be a standard Brownian motion. Then

lim supa→0+

2a log
∫∞
0

eB(s)−asds

log log(1/a)
= 1 a.s. (1.15)

For a family of functions or a sequence (xt) denote by C((xt)) the set of its limit
points.

Corollary 1.9. Under the assumptions of Theorem 1.8,

C
(( 2a log Y (a)

log log(1/a)
: a ∈ (0, 1/e)

))
= [0, σ] a.s.

and

C
((2a log

∫∞
0

eB(s)−asds

log log(1/a)
: a ∈ (0, 1/e)

))
= [0, 1] a.s.
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Limit theorems for perpetuities

Remark 1.10. There exist distributions of η which satisfy (1.4) (the assumption of
Theorem 1.2) and do not satisfy (1.13) (the assumption of Theorem 1.8). To exemplify, let
P{log η > t} ∼ t−2(log t)−1 as t→∞. It will be explained in Remark 4.3 that, under (1.3),
relation (1.14) fails to hold for the aforementioned distributions of η.

The log-exponential normalization in the laws of iterated logarithms (1.14) and (1.15)
is not new. It has already appeared in the literature for random walks with infinite
second moments; see [7, 15]. A collection of related results can be found in Section 7.5
of the book [16].

1.3 A connection to the exponential functional of Brownian motion

The variable
∫∞
0

eB(s)−asds appearing in (1.15) serves as a continuous-time counter-
part of the discounted convergent perpetuities Y (a). It is known in the literature as an
exponential functional of Brownian motion and has been the object of intensive research
in the recent past; see [22] for a collection of results in a book format.

The advantage of working with
∫∞
0

eB(s)−asds, a > 0 is availability of explicit formulae
for their marginal distributions. This makes their analysis easier in comparison to that
of Y (a). The appearance below of the distributions of the suprema of certain Lévy
processes with a drift in the role of limit distributions provides a hint towards what can
be expected in the discrete setting in Theorems 1.2, 1.4 and 1.7.

In what follows,
d
= and

d−→ denote equality of distributions and convergence in
distribution, respectively. Let θb, c be a random variable having a gamma distribution
with positive parameters b and c, that is,

P{θb, c ∈ dx} =
cbxb−1

Γ(b)
e−cx 1(0,∞)(x)dx,

where Γ is the Euler gamma function. Note that θ1, c is an exponentially distributed
random variable of mean 1/c. A known result (Proposition 3 in [17], Proposition 4.4.4 (b)
in [9], Example 3.3 on p. 309 in [19]) states that, for each a > 0,∫ ∞

0

eB(s)−asds
d
= 2/θ2a, 1. (1.16)

From this we infer

a log

∫ ∞
0

eB(s)−asds
d−→ θ1, 2, a→ 0+, (1.17)

The appearance of an exponential distribution may look mysterious, unless it is inter-
preted via the distributional equality

θ1, 2
d
= sup

s≥0
(B(s)− s),

which follows from Corollary 2 (ii) on p. 190 in [1]. Thus, (1.17) is a continuous-time
counterpart of Theorem 1.2. It also serves an informal explanation of the fact that one
factor of the normalization in Theorem 1.8 is log log 1/a rather than (log log 1/a)1/2 which
typically arises in the cases when the limit distribution is normal.

More generally, let L := (L(s))s≥0 be a centered spectrally negative Lévy process.

Then, by the same Corollary 2 (ii) in [1], sups≥0 (L(s) − s) d
= θ1, τ , where τ > 0 is the

largest solution to the equation e−sEesL(1) = 1. If L = B a Brownian motion, then the
latter equation is equivalent to s2/2− s = 0, whence τ = 2. By the same reasoning, for
each u > 0 and each w ∈ R,

sup
s≥0

(wB(s)− us) d
= θ1, 2u/w2 . (1.18)
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Limit theorems for perpetuities

Assume additionally that L is an α-stable Lévy process, α ∈ (1, 2]. Then arguing along
the lines of the proof of Theorem 1.2 one can show that

aα−1 log

∫ ∞
0

eL(s)−asds
d−→ sup

s≥0
(L(s)− s) d

= θ1, τ , a→ 0 + .

2 Auxiliary results

2.1 Marginal limit distributions and continuity of the paths

According to (1.18), the marginal limit distributions in Theorem 1.2 are exponential
with means σ2/(2u). In Proposition 2.1 we identify the marginal limit distributions in
Theorems 1.4 and 1.7 and justify the claim made in Remark 1.5.

Proposition 2.1. Let x, u, T > 0.
(a) For λ > 0 and β ∈ (1, 2],

P
{

sup
k: t

(λ, β)
k ≤T

(
−ut(λ, β)k + j

(λ, β)
k

)
≤ x

}
= exp(−u−1(β−1)−1λ(x1−β− (x+uT )1−β), (2.1)

P
{

sup
k

(
− ut(λ, β)k + j

(λ, β)
k

)
≤ x

}
= exp(−u−1(β − 1)−1λx1−β) (2.2)

and
P
{

sup
k

(
− ut(λ, 1)k + j

(λ, 1)
k

)
≤ x

}
= 0. (2.3)

In particular, the random variables sup
k: t

(1, β)
k ≤T

(
−ut(λ, β)k + j

(λ, β)
k

)
and supk

(
−ut(λ, β)k +

j
(λ, β)
k

)
are a.s. finite and positive, and the latter has a rescaled Fréchet distribution with

the shape parameter β − 1.
(b) For λ, σ > 0,

P
{

sup
k: t

(λ, 2)
k ≤T

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
≤ x

}
= E exp

(
− λ

∫ T

0

dt

(x− σB(t) + ut)2

)
1{sups∈[0, T ] (σB(s)−us)<x} (2.4)

and

P
{

sup
k

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
≤ x

}
= E exp

(
− λ

∫ ∞
0

dt

((x− σB(t) + ut)+)2

)
= E exp

(
− λ

∫ ∞
0

dt

(x− σB(t) + ut)2

)
1{sups≥0 (σB(s)−us)<x} . (2.5)

In particular, the random variables sup
k: t

(λ, 2)
k ≤T

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
and

supk
(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
are a.s. finite and positive.

Proof. (a) We shall prove (2.1) and

P
{

sup
k: t

(λ, 1)
k ≤T

(
− ut(λ, 1)k + j

(λ, 1)
k

)
≤ x

}
=
( x

uT + x

)λ/u
, x > 0. (2.6)

Sending T →∞ yields (2.2) and (2.3).
The probabilities on the left-hand sides of (2.1) and (2.6) are equal to

P
{
N (λ, β)

(
(t, y) : t ≤ T,−ut+ y > x

)
= 0
}

= exp
(
− EN (λ, β)

(
(t, y) : t ≤ T,−ut+ y > x

))
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Limit theorems for perpetuities

for β ∈ (1, 2] and β = 1, respectively, because N (λ, β)
(
(t, y) : t ≤ T,−ut + y > x

)
is a

Poisson distributed random variable. Since

EN (λ, β)
(
(t, y) : t ≤ T,−ut+ y > x

)
=

∫ T

0

∫
[0,∞)

1{y>ut+x} µλ, β(dy)dt = λ

∫ T

0

(ut+ x)−βdt

=

{
u−1(β − 1)−1λ(x1−β − (x+ uT )1−β), if β ∈ (1, 2],

u−1λ(log(uT + x)− log x), if β = 1,

(2.1) and (2.6) follow. Letting in (2.1) and (2.2) x→ 0+ justifies the claims about the a.s.
positivity.
(b) Conditioning on B and arguing as in the proof of part (a) we arrive at

P
{

sup
k: t

(λ, 2)
k ≤T

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
≤ x

}
= E exp

(
− λ

∫ T

0

dt

((x− σB(t) + ut)+)2

)
.

In the case u = 0 this formula can also be found in Proposition 1 of [21], along with an
equivalent representation of the right-hand side. Formula (2.4) is its analogue in the
case u > 0.

By the strong law of large numbers for a Brownian motion, the integrand in (2.4)
behaves as (ut)−2 as t→∞. Hence, it is integrable on [0,∞). Sending in (2.4) T →∞
and invoking the Lebesgue dominated convergence theorem prove (2.5). In view of (1.18),
the random variable sups≥0 (σB(s) − us) is a.s. positive. Hence, letting in the second
part of (2.5) x→ 0+ and appealing once again to the Lebesgue dominated convergence
theorem we conclude that the variable supk

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
is a.s. positive.

The a.s. positivity of sup
k: t

(λ, 2)
k ≤T

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
follows analogously.

The next lemma justifies the usage of space C in our distributional limit theorems.

Lemma 2.2. The processes
(
Z(au)

)
u>0

,
(

log Y (au)
)
u>0

and the limit processes in The-

orems 1.2, 1.4 and 1.7 are a.s. convex, hence a.s. continuous.

Proof. Recall that, according to the discussion at the beginning of Section 1.2, the first
two processes (the converging processes in our distributional limit theorems) are a.s.
finite for each u > 0. The a.s. finiteness of the limit processes, for each u > 0, follows
from (1.18), (2.2) and (2.5), respectively.

Further, write, for any λ1, λ2 ≥ 0 satisfying λ1 + λ2 = 1 and any u1, u2 > 0,

sup
k≥0

(Sk − a(λ1u1 + λ2u2)k + log ηk+1)

= sup
k≥0

(λ1(Sk − au1k + log ηk+1) + λ2(Sk − au2k + log ηk+1))

≤ sup
k≥0

(λ1(Sk − au1k + log ηk+1)) + sup
k≥0

(λ2(Sk − au2k + log ηk+1))

= λ1 sup
k≥0

(Sk − au1k + log ηk+1) + λ2 sup
k≥0

(Sk − au2k + log ηk+1)

having utilized subadditivity of the supremum for the inequality. This proves the claim
for the first process. The proofs for the limit processes are analogous.

For each a > 0, the function u 7→ Y (au) =
∑
k≥0 eSk−aukηk+1 is the Laplace-Stieltjes

transform of an infinite random measure µa defined by µa({ak}) := eSkηk+1 for k ∈ N0.
It is a standard fact, which is secured by Hölder’s inequality, that any Laplace-Stieltjes
transform f , say, is log-convex, that is, log f is convex.
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We close this section with another auxiliary result.

Lemma 2.3. Let β ∈ (1, 2] and λ > 0. With probability one, for each u > 0,

lim
T→∞

sup
s≥T

(σB(s)− us) = −∞, (2.7)

lim
T→∞

sup
k: t

(1, β)
k ≥T

(
− ut(1, β)k + j

(1, β)
k

)
= −∞

and

lim
T→∞

sup
k: t

(λ, 2)
k ≥T

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
= −∞. (2.8)

Proof. Relation (2.7) follows from

lim
T→∞

sup
s≥T

(σB(s)− us) = lim supT→∞ (σB(T )− uT ) = −∞ a.s.,

where the last equality is ensured by the strong law of large numbers for a Brownian
motion.

Arguing as in the proof of Proposition 2.1 we conclude that

P
{

sup
k: t

(1, β)
k ≥T

(
−ut(1, β)k +j

(1, β)
k

)
≤x
}

=

{
0, for x ≤ −uT,
exp

(
− (u(β − 1))−1(uT + x)1−β

)
, for x > −uT.

Letting T → ∞ we infer limT→∞ sup
k: t

(1, β)
k ≥T

(
− ut(1, β)k + j

(1, β)
k

)
= −∞ in probability

and, by monotonicity, a.s.

Using subadditivity of the supremum yields

sup
k: t

(λ, 2)
k ≥T

(
σB(t

(λ, 2)
k )−ut(λ, 2)k +j

(λ, 2)
k

)
≤ sup
s≥T

(σB(s)−us/2)+ sup
k: t

(λ, 2)
k ≥T

(
−ut(λ, 2)k /2+j

(λ, 2)
k

)
.

According to formula (2.2) with β = 2, supk
(
− ut(λ, 2)k /2 + j

(λ, 2)
k

)
is a.s. finite, whence

lim
T→∞

sup
k: t

(λ, 2)
k ≥T

(
− ut(λ, 2)k /2 + j

(λ, 2)
k

)
<∞ a.s.

This in combination with (2.7) proves (2.8).

2.2 Technical results

Denote by D the Skorokhod space of càdlàg functions defined on [0,∞). We assume
that the space D is endowed with the J1-topology

Lemma 2.4. For n ∈ N0, let fn ∈ D and limn→∞ fn = f0 on D. Assume that

M0 := sup
t≥0

f0(t) <∞

and

lim sup
t→∞

lim sup
n→∞

fn(t) < M0. (2.9)

Then

lim
n→∞

sup
t≥0

fn(t) = M0.
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Proof. By (2.9), given sufficiently small ε > 0, there exist T (ε) ≥ 0 and n0(ε) ∈ N such
that

fn(t) ≤M0 − ε, t ≥ T (ε), n ≥ n0(ε).

By the definition of supremum, there exists t0(ε) ≥ 0 such that

M0 − ε/2 ≤ f0(t0(ε)) ≤M0.

In view of the assumption limn→∞ fn = f0, there exists a sequence (tn(ε))n∈N such that

lim
n→∞

tn(ε) = t0(ε) and lim
n→∞

fn(tn(ε)) = f0(t0(ε)).

Thus, there exists n1(ε) ∈ N such that, for n ≥ n1(ε),

tn(ε) ≤ t0(ε) + ε and fn(tn(ε)) ≥ f0(t0(ε))− ε/2 ≥M0 − ε.

Put a(ε) := max(T (ε), t0(ε) + ε). Combining the fragments together we conclude that, for
n ≥ max(n0(ε), n1(ε)),

sup
t≥0

fn(t) = sup
t∈[0, a(ε)]

fn(t)

and thereupon

lim
n→∞

sup
t≥0

fn(t) = lim
n→∞

sup
t∈[0, a(ε)]

fn(t) = sup
t∈[0, a(ε)]

f0(t) ∈ [M0 − ε,M0].

Sending ε→ 0+ completes the proof.

Remark 2.5. If f0 is continuous, then (2.9) boils down to

lim sup
t→∞

f0(t) < M0. (2.10)

Corollary 2.6. Under the assumption of Lemma 2.4, for each T > 0,

lim
n→∞

sup
t≥T

fn(t) = sup
t≥T

f0(t).

Proof. Apply Lemma 2.4 to the sequence (fn(T + ·))n∈N0
.

We shall need Theorem 1.3.17 in [12] which we state as Proposition 2.7 and a slight
extension of Lemma 1.3.18 in [12] which we state as Lemma 2.8. Let C[0,∞) be the
set of continuous functions defined on [0,∞) equipped with the locally uniform topology.
Denote by Mp the set of point measures ν on [0,∞)× (0,∞] which satisfy

ν([0, r]× [δ,∞]) <∞

for all r > 0 and all δ > 0. The set Mp is endowed with the topology of vague convergence.
Define the mapping F from D ×Mp to D by

F(f, ν)(t) :=

{
supk: θk≤t (f(θk) + yk), if θk ≤ t for some k,

f(0), otherwise,

where ν =
∑
k ε(θk, yk).

Proposition 2.7. For j ∈ N, let fj ∈ D and νj ∈Mp. Assume that f0 ∈ C[0,∞) and

• ν0({0} × (0,+∞]) = 0,

• ν0((r1, r2)× (0,∞]) ≥ 1 for all positive r1 and r2 such that r1 < r2,
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• ν0 =
∑
k ε
(
θ
(0)
k , y

(0)
k

) does not have clustered jumps, that is, θ(0)k 6= θ
(0)
j for k 6= j.

If limj→∞ fj = f0 in the J1-topology on D and limj→∞ νj = ν0 on Mp, then

lim
j→∞

F(fj , νj) = F(f0, ν0)

in the J1-topology on D.

Lemma 2.8. Let T ≥ 0, γ, ρ > 0. With probability one the random measure N (γ, ρ)
T :=∑

k 1{t(γ, ρ)k ≥T} ε(t(γ, ρ)k −T, j(γ, ρ)k )
satisfies all the assumptions imposed on ν0 in Proposi-

tion 2.7. Here, (t
(γ, ρ)
k , j

(γ, ρ)
k ) are the atoms of a Poisson random measure N (γ, ρ) defined

in the paragraph preceding Theorem 1.4.

Proof. The case T = 0 is covered by Lemma 1.3.18 in [12]. If T > 0, then N
(γ, ρ)
T is

just a deterministic shift of N (γ, ρ). Since the latter does not have atoms on any fixed
deterministic vertical line with probability one, the claim follows.

Hereafter, we write
f.d.−→ and

P−→ to denote weak convergence of finite-dimensional
distributions and convergence in probability, respectively.

Proposition 2.9. Under the assumptions of Theorem 1.2, for any T > 0,(
a sup
0≤k≤bTa−2c

(Sk− auk+ log ηk+1)
)
u∈R

f.d.−→
(

sup
s∈[0, T ]

(σB(s)−us)
)
u∈R, a→ 0+, (2.11)

where (B(s))s≥0 is a standard Brownian motion, and, for any T ≥ 0,

(a sup
k≥bTa−2c

(Sk − auk + log ηk+1))u>0
f.d.−→ (sup

s≥T
(σB(s)− us))u>0, a→ 0 + . (2.12)

Proof. We shall write ζ for log η and ζk for log ηk, k ∈ N.
By Donsker’s theorem,

(aSbTa−2c)T≥0 =⇒ (σB(T ))T≥0, a→ 0+,

on D. Fix any T > 0. Since, for all ε > 0,

P{a max
1≤k≤bTa−2c+1

ζk > ε} = 1−
(
P{ζ ≤ εa−1}

)bTa−2c+1

≤ (bTa−2c+ 1)P{ζ > εa−1} → 0

as a→ 0+ in view of (1.4), we infer

a max
1≤k≤bTa−2c+1

ζk
P−→ 0, a→ 0+,

which implies
(aζbTa−2c+1)T≥0 =⇒ (Ξ(T ))T≥0, a→ 0+

on D where Ξ(t) = 0 for t ≥ 0. Hence,

(a(SbTa−2c + ζbTa−2c+1))T≥0 =⇒ (σB(T ))T≥0, a→ 0+

by Slutsky’s lemma and thereupon, for any n ∈ N and any −∞ < u1 < . . . < un <∞,

(a(SbTa−2c − au1bTa−2c+ ζbTa−2c+1), . . . , a(SbTa−2c − aunbTa−2c+ ζbTa−2c+1))T≥0

=⇒ (σB(T )− u1T, . . . , σB(T )− unT )T≥0, a→ 0+ (2.13)
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in the J1-topology on Dn. The supremum functional is continuous in the J1-topology.
This in combination with the continuous mapping theorem proves (2.11).

By the Skorokhod representation theorem, there exist versions of the processes
in (2.13), for which (2.13) holds a.s., with a replaced by (ak)k∈N an arbitrary convergent
to 0 sequence of positive numbers. Each coordinate of the version of the limit is a.s.
continuous and, for each u > 0, lims→∞(σB(s) − us) = −∞ a.s. by the strong law of
large numbers for a Brownian motion. The latter ensures that the a.s. counterpart
of (2.10) holds for each coordinate of the version of the limit. Applying Corollary 2.6 and
Remark 2.5 separately to each coordinate of the versions and passing from the versions
to the original processes we arrive at (2.12).

Proposition 2.10. Under the assumptions of Theorem 1.4, for any T > 0,( 1

ac(a)
sup

k≤bTc(a)c
(Sk−auk+log ηk+1)

)
u>0

f.d.−→
(

sup
k: t

(1, β)
k ≤T

(−ut(1, β)k +j
(1, β)
k )

)
u>0

, a→ 0+

(2.14)
and, for any T ≥ 0,( 1

ac(a)
sup

k≥bTc(a)c
(Sk−auk+log ηk+1)

)
u>0

f.d.−→
(

sup
k: t

(1, β)
k ≥T

(−ut(1, β)k +j
(1, β)
k )

)
u>0

, a→0+.

(2.15)
Under the assumptions of Theorem 1.7, as a→ 0+, for any T > 0,(
a sup
k≤bTa−2c

(Sk − auk + log ηk+1)
)
u>0

f.d.−→
(

sup
k, t

(λ, 2)
k ≥T

(σB(t
(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k )

)
u>0

(2.16)
and, for any T ≥ 0,(
a sup
k≥bTa−2c

(Sk − auk + log ηk+1)
)
u>0

f.d.−→
(

sup
k: t

(λ, 2)
k ≥T

(σB(t
(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k )

)
u>0

.

(2.17)

Proof. In the setting of Theorem 1.4 put c(a) := a−2 for a > 0.

Fix u > 0 and T ≥ 0. Under the assumptions of Theorem 1.7, there is a joint
convergence

((Sb(t+T )c(a)c√
c(a)

− u(t+ T )
)
t≥0

,
∑
k≥0

1{k≥bTc(a)c} ε(k/c(a)−T, ζk+1/
√
c(a))

)
=⇒

(
(σB(t+ T )− u(t+ T ))t≥0,

∑
k

1{t(λ, 2)k ≥T} ε(t(λ, 2)k −T, j(λ, 2)k )

)
, a→ 0+ (2.18)

in the space D ×Mp endowed with the product topology; see the bottom of p. 27 in [12].
Moreover, the components on the right-hand side are independent. Fix now any n ∈ N
and any 0 < u1 < u2 < . . . < un <∞. Then (2.18) immediately extends to

(((Sb(t+T )c(a)c√
c(a)

− ui(t+ T )
)
t≥0

)
1≤i≤n

,
∑
k≥0

1{k≥bTc(a)c} ε(k/c(a)−T, ζk+1/
√
c(a))

)
=⇒

(
((σB(t+ T )− ui(t+ T ))t≥0)1≤i≤n,

∑
k

1{t(λ, 2)k ≥T} ε(t(λ, 2)k −T, j(λ, 2)k )

)
, a→ 0+

(2.19)
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in the space Dn ×Mp endowed with the product topology, because the components
indexed by i only differ by a deterministic term. Similarly, under the assumptions of
Theorem 1.4,

(((Sb(t+T )c(a)c

ac(a)
− ui(t+ T )

)
t≥0

)
1≤i≤n

,
∑
k≥0

1{k≥bTc(a)c} ε(k/c(a)−T, ζk+1/ac(a))

)
=⇒

(
((−ui(t+ T ))t≥0)1≤i≤n,

∑
k

1{t(1, β)k ≥T} ε(t(1, β)k −T, j(1, β)k )

)
, a→ 0+ (2.20)

in the space Dn ×Mp endowed with the product topology, where the convergence of the
normalized random walk to the zero process Ξ follows from (1.9) which ensures that
ac(a)/

√
c(a) = a

√
c(a)→∞ as a→ 0+.

Fix any T1 > T and let (aj)j∈N be any sequence of positive numbers satisfying
limj→∞ aj = 0. By the Skorokhod representation theorem there are versions of the
processes, for which (2.19) and (2.20) hold a.s. Retaining the original notation for these
versions we intend to apply Proposition 2.7 n times with

fj(t) :=
Sb(t+T )c(aj)c√

c(aj)
− ui(t+ T ), νj :=

∑
k≥0

1{k≥bTc(aj)c} ε(k/c(aj)−T, ζk+1/
√
c(aj))

f0(t) := σB(t+ T )− ui(t+ T ),

ν0 :=
∑
k

1{t(λ, 2)k ≥T} ε(t(λ, 2)k −T, j(λ, 2)k )
, j ∈ N, t ≥ 0, i = 1, . . . , n

and n times with

fj(t) :=
Sb(t+T )c(aj)c

ajc(aj)
− ui(t+ T ), νj :=

∑
k≥0

1{k≥bTc(aj)c} ε(k/c(aj)−T, ζk+1/ajc(aj))

f0(t) := −ui(t+ T ), ν0 :=
∑
k

1{t(1, β)k ≥T} ε(t(1, β)k −T, j(1, β)k )
, j ∈ N, t ≥ 0, i = 1, . . . , n.

The so defined converging and limit processes satisfy the assumptions of Proposition 2.7
with probability one. In particular, a.s. continuity of the limit functions f0 is obvious,
whereas Lemma 2.8 justifies the claim for the random measures ν0. A specialization of
Proposition 2.7 to the one-dimensional (rather than functional) convergence in conjunc-
tion with (2.19) and (2.20) yields(

a sup
bTc(a)c≤k≤bT1c(a)c

(
Sk − auk + ζk+1

))
u>0

f.d.−→
(

sup
k: T≤t(λ, 2)k ≤T1

(σB(t
(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k )

)
u>0

, a→ 0+ (2.21)

and( 1

ac(a)
sup

bTc(a)c≤k≤bT1c(a)c

(
Sk − auk + ζk+1

))
u>0

f.d.−→
(

sup
k: T≤t(1, β)k ≤T1

(−ut(1, β)k + j
(1, β)
k )

)
u>0

, a→ 0+, (2.22)

respectively. Putting in (2.21) and (2.22) T = 0 and then replacing T1 with T we
obtain (2.16) and (2.14).
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The right-hand sides of (2.21) and (2.22) converge a.s. as T1 → ∞ to the right-
hand sides of (2.17) and (2.15), respectively. According to Theorem 4.2 on p. 25 in [2],
both (2.15) and (2.17) follow if we can show that, for all ε > 0,

lim
T1→∞

lim sup
a→0+

P
{ n∑
i=1

(
sup

bTc(a)c≤k

(
Sk − auk + ζk+1

)
− sup
bTc(a)c≤k≤bT1c(a)c

(
Sk − auk + ζk+1

))2
> ε
}

= 0.

Plainly, it is sufficient to check that, for each fixed u > 0,

lim
T1→∞

lim sup
a→0+

P
{

sup
bTc(a)c≤k≤bT1c(a)c

(
Sk − auk + ζk+1

)
6= sup
bTc(a)c≤k

(
Sk − auk + ζk+1

)}
= 0.

Note that, for T1 ≥ 2T and z ∈ R,

P
{

sup
bTc(a)c≤k≤bT1c(a)c

(
Sk − auk + ζk+1

)
6= sup
bTc(a)c≤k

(
Sk − auk + ζk+1

)}
= P

{ 1

ac(a)
sup

bTc(a)c≤k≤bT1c(a)c

(
Sk − auk + ζk+1

)
<

1

ac(a)
sup

k>bT1c(a)c

(
Sk − auk + ζk+1

)}
≤ P

{ 1

ac(a)
sup

bTc(a)c≤k≤b2Tc(a)c

(
Sk − auk + ζk+1

)
<

1

ac(a)
sup

k>bT1c(a)c

(
Sk − auk + ζk+1

)}
≤ P

{ 1

ac(a)
sup

bTc(a)c≤k≤b2Tc(a)c

(
Sk − auk + ζk+1

)
≤ z
}

+ P
{ 1

ac(a)
sup

k>bT1c(a)c

(
Sk − auk + ζk+1

)
> z
}
.

According to (2.21) and (2.22), the random variables (ac(a))−1 supbTc(a)c≤k≤b2Tc(a)c
(
Sk−

auk + ζk+1

)
converge in distribution as a→ 0+ to an a.s. finite random variable ρT , say

(the a.s. finiteness follows from Proposition 2.1). As a consequence, the first probability
on the right-hand side tends to 0 as a → 0+ and then z → −∞ along the sequence of
continuity points of the distribution function of ρT . Thus, it is enough to prove that, for
each fixed z ∈ R,

lim
T1→∞

lim sup
a→0+

P
{ 1

ac(a)
sup

k>bT1c(a)c

(
Sk − auk + ζk+1

)
> z
}

= 0.

The latter probability does not exceed

P
{

sup
k>bT1c(a)c

(Sk − auk/2) > ac(a)
}

+P
{

sup
k>bT1c(a)c

(ζk+1 − auk/2) > (z − 1)ac(a)
}
. (2.23)

In the setting of Theorem 1.7,

lim
T1→∞

lim sup
a→0+

P
{

sup
k>bT1c(a)c

(Sk − auk/2) > ac(a)
}

= 0.

by (2.12) and (2.7), whereas in the setting of Theorem 1.4 this follows from (2.12)
and (1.9). Indeed, for small enough a > 0, (1.9) entails c(a) ≥ a−2, whence

P
{

sup
k>bT1c(a)c

(Sk − auk/2) > ac(a)
}
≤ P

{
a sup
k>bT1a−2c

(Sk − auk/2) > a2c(a)
}
.

In view of (2.12), the right-hand side converges to 0 as a→ 0+.
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As far as the second summand in (2.23) is concerned we argue as follows. For large
T1 > max(2(1− z), 0) and small a > 0,

P
{

sup
k>bT1c(a)c

(ζk+1 − auk/2) > (z − 1)ac(a)
}

≤
∑

k>bT1c(a)c

P {ζk+1 > auk/2 + (z − 1)ac(a)− a/2}

≤
∫ ∞
bT1c(a)c

P{ζ > aux/2 + (z − 1)ac(a)− a/2}dx

=
2

ua

∫ ∞
(a/2)(bT1c(a)cu+2(z−1)c(a)−1)

P{ζ > x}dx

∼ 1

ua

1

β − 1
(T1u+ 2(z − 1))ac(a)P{ζ > (T1u+ 2(z − 1))ac(a)/2}

∼ 1

au

1

β − 1
(T1u+ 2(z − 1))ac(a)P{ζ > (T1u+ 2(z − 1))b(c(a))/2}

∼ 1

au

2β

β − 1
(T1u+ 2(z − 1))1−βac(a)

1

c(a)
, a→ 0 + .

We have used Proposition 1.5.10 in [3] for the first asymptotic equivalence. Since
β > 1, the right-hand side converges to zero as T1 → ∞. This completes the proof of
Proposition 2.10.

3 Proofs of Theorems 1.2, 1.4 and 1.7

We shall prove all the results simultaneously. To this end, for a, T, u > 0, put

m(a) := a, c(a) := a−2, X1(u, T ) := sup
s∈[0, T ]

(σB(s)− us), X1(u,∞) := sup
s≥0

(σB(s)− us)

and
X∗1 (u, T ) := sup

s≥T
(σB(s)− us)

under the assumptions of Theorem 1.2;

m(a) := (ac(a))−1, c(a) is as defined in Theorem 1.4,

X2(u, T ) := sup
k: t

(1, β)
k ≤T

(
− ut(1, β)k + j

(1, β)
k

)
, X2(u,∞) := sup

k

(
− ut(1, β)k + j

(1, β)
k

)
and X∗2 (u, T ) := sup

k: t
(1, β)
k ≥T

(
− ut(1, β)k + j

(1, β)
k

)
under the assumptions of Theorem 1.4; and

m(a) := a, c(a) := a−2, X3(u, T ) := sup
k: t

(λ, 2)
k ≤T

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
,

X3(u,∞) := sup
k

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
and X∗3 (u, T ) := sup

k: t
(λ, 2)
k ≥T

(
σB(t

(λ, 2)
k )− ut(λ, 2)k + j

(λ, 2)
k

)
under the assumptions of Theorem 1.7.
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Since the converging processes(
m(a)Z(au)

)
u>0

and (m(a) log Y (au))u>0

are a.s. nonincreasing and, by Lemma 2.2, the limit processes (Xl(u,∞))u>0, l = 1, 2, 3

are a.s. continuous, weak convergence of probability measures in C is equivalent to
weak convergence of the corresponding finite-dimensional distributions. This follows
from Skorokhod’s representation theorem in combination with Dini’s theorem.

Thus, limit relations (1.5), (1.7) and (1.11), dealing with the convergence of suprema,
are ensured by (2.12), (2.15) and (2.17) all with T = 0, respectively, and the last remark.
As far as the perpetuities are concerned, we have to show that(

m(a) log Y (au)
)
u>0

f.d.−→ (Xl(u,∞))u>0, a→ 0+, l = 1, 2, 3. (3.1)

As a preparation, we prove that, for any T > 0,

(
m(a) log

bTc(a)c∑
k=0

eSk−aukηk+1

)
u>0

f.d.−→ (Xl(u, T ))u>0, a→ 0+, l = 1, 2, 3. (3.2)

Fix any n ∈ N, any γ1, . . . , γn ∈ R and any 0 < u1, u2, . . . , un < ∞. Assume, without
loss of generality, that γ1, . . . , γn0

≥ 0 and γn0+1, . . . , γn < 0 for some n0 ∈ N0, n0 ≤ n. In
particular, the situation is allowed in which all γj are of the same sign (in which case
n0 = 0 or n0 = n). In view of the Cramér-Wold device, relation (3.2) is equivalent to the
following: for any T > 0, as a→ 0+,

m(a)

n∑
j=1

γj log

bTc(a)c∑
k=0

eSk−aujkηk+1
d−→

n∑
j=1

γjXl(uj , T ), l = 1, 2, 3. (3.3)

To prove (3.3), write, for any T > 0,

n∑
j=1

γj log

bTc(a)c∑
k=0

eSk−aujkηk+1 =

n0∑
j=1

γj log

bTc(a)c∑
k=0

eSk−aujkηk+1

+
n∑

j=n0+1

γj log

bTc(a)c∑
k=0

eSk−aujkηk+1≤
n0∑
j=1

γj
(

log(bTc(a)c+1)+ max
0≤k≤bTc(a)c

(Sk−aujk+ζk+1)
)

+

n∑
j=n0+1

γj max
0≤k≤bTc(a)c

(Sk − aujk + ζk+1),

where ζj = log ηj for j ∈ N, and analogously

n∑
j=1

γj log

bTc(a)c∑
k=0

eSk−aujkηk+1 ≥
n0∑
j=1

γj max
0≤k≤bTc(a)c

(Sk − aujk + ζk+1)

+

n∑
j=n0+1

γj
(

log(bTc(a)c+ 1) + max
0≤k≤bTc(a)c

(Sk − aujk + ζk+1)
)
.

With these at hand, (3.3) follows from

(m(a) sup
0≤k≤bTc(a)c

(Sk − auk + ζk+1))u>0
f.d.−→ (Xl(u, T ))u>0, a→ 0+, l = 1, 2, 3, (3.4)

(see (2.11), (2.14) and (2.16)) and the fact that lima→0+m(a) log c(a) = 0. In the setting of
Theorem 1.2 the latter is justified by the regular variation of c at 0+ of index −β/(β − 1);
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see Remark 1.5. This particularly implies that the function a 7→ m(a) = (ac(a))−1 is
regularly varying at 0+ of positive index (β − 1)−1.

Plainly, limT→∞
∑n
j=1 γjXl(uj , T ) =

∑n
j=1 γjXl(uj ,∞) a.s. Hence, according to The-

orem 4.2 on p. 25 in [2] the proof of (3.1) is complete if we can show that, for all
ε > 0,

lim
T→∞

lim supa→0+P
{
m(a)

∣∣∣ n∑
j=1

γj

(
log Y (auj)− log

bTc(a)c∑
k=0

eSk−aujkηk+1

)∣∣∣ > ε
}

= 0.

By the triangle inequality, it is enough to prove that, with u > 0 fixed,

lim
T→∞

lim supa→0+P
{
m(a)

(
log Y (au)− log

bTc(a)c∑
k=0

eSk−aukηk+1

)
> ε
}

= 0.

The latter probability is upper bounded as follows:

≤ P
{
m(a)

(
log+ Y (au)− log

bTc(a)c∑
k=0

eSk−aukηk+1

)
> ε, log

bTc(a)c∑
k=0

eSk−aukηk+1 ≤ 0
}

+ P
{
m(a)

(
log+ Y (au)− log

bTc(a)c∑
k=0

eSk−aukηk+1

)
> ε, log

bTc(a)c∑
k=0

eSk−aukηk+1 > 0
}

≤ P
{
m(a) log

bTc(a)c∑
k=0

eSk−aukηk+1 ≤ 0
}

+ P
{
m(a)

(
log+ Y (au)− log+

bTc(a)c∑
k=0

eSk−aukηk+1

)
> ε
}
.

The first probability on the right-hand side converges to 0 as a → 0+. This is secured
by (3.3) with n = 1 and γ1 = 1, and the fact that the right-hand sides in (3.3) are a.s.
positive. The latter follows from (1.18) and Proposition 2.1. To proceed, we need two
inequalities:

log+(x+ y) ≤ log+(x) + log+(y) + 2 log 2, x, y ≥ 0 (3.5)

and
log+(xy) ≤ log+ x+ log+ y, x, y ≥ 0. (3.6)

Inequality (3.5) follows from

log+(x) ≤ log(1 + x) ≤ log+(x) + log 2, x ≥ 0

and the subadditivity of x 7→ log(1 + x), namely,

log+(x+ y) ≤ log(1 + x+ y) ≤ log(1 + x) + log(1 + y)

≤ log+(x) + log+(y) + 2 log 2, x, y ≥ 0.

Inequality (3.6) is a consequence of the subadditivity of x→ x+.
In view of (3.5), it remains to prove that

lim
T→∞

lim supa→0+P
{
m(a) log+

∑
k>bTc(a)c

eSk−aukηk+1 > ε
}

= 0. (3.7)

To this end, write, with the help of (3.6),

log+
∑

k>bTc(a)c

eSk−aukηk+1 ≤ ( sup
k>bTc(a)c

(Sk − auk/2 + ζk+1))+ + log+
∑

k>bTc(a)c

e−auk/2.
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While lima→0+ log+∑
k>bTc(a)c e−auk/2 = 0, formulae (2.12), (2.15) and (2.17) entail

m(a)( sup
k>bTc(a)c

(Sk − auk/2 + ζk+1))+
d−→ (X∗l (u/2, T ))+, a→ 0+, l = 1, 2, 3.

Finally, by Lemma 2.3, limT→∞ (X∗l (u/2, T ))+ = 0 a.s., and (3.7) follows.
The proof of Theorems 1.2, 1.4 and 1.7 is complete.

4 Proof of Theorem 1.8 and Corollary 1.9

The following deterministic result is a consequence of Corollary 4.12.5 in [3].

Proposition 4.1. Let A ∈ (0,∞) and µ be a locally finite measure on [0,∞). Assume
that the function ϕ is regularly varying at ∞ of index α > 1 and put ψ(t) := ϕ(t)/t for
large t. Then

lim supx→∞
logµ([0, ϕ(x)])

x
= A (4.1)

if, and only if,

lim supλ→∞
log
∫
[0,∞)

e−x/ψ(λ)µ(dx)

λ
= (α− 1)

(A
α

)α/(α−1)
. (4.2)

Proof. Assume that (4.1) holds. Then, according to the first implication in Corollary
4.12.5 in [3],

lim supλ→∞
log
∫
[0,∞)

e−x/ψ(λ)µ(dx)

λ
≤ (α− 1)

(A
α

)α/(α−1)
. (4.3)

Suppose that the above inequality is strict, that is, for some ε > 0 and A(ε) < A,

lim supλ→∞
log
∫
[0,∞)

e−x/ψ(λ)µ(dx)

λ
= (α− 1)

(A
α

)α/(α−1)
− ε = (α− 1)

(A(ε)

α

)α/(α−1)
.

Then the second implication in the aforementioned Corollary 4.12.5 yields

lim supx→∞
logµ([0, ϕ(x)])

x
≤ A1(ε) < A,

which is a contradiction. Thus, the inequality in (4.3) can be replaced by the equality.
The inverse implication follows analogously.

The following result is needed for the proof of Theorem 1.8(a) and also of independent
interest.

Theorem 4.2. Suppose that (1.3) and (1.13) hold. Then

lim supt→∞
max0≤k≤btc (Sk + log ηk+1)

(t log log t)1/2
= 21/2σ a.s. (4.4)

and

lim supt→∞
log
∑btc
k=0 eSkηk+1

(t log log t)1/2
= 21/2σ a.s. (4.5)

Proof. In view of

max
0≤k≤btc

(Sk + log ηk+1) ≤ log

btc∑
k=0

eSkηk+1 ≤ log(btc+ 1) + max
0≤k≤btc

(Sk + log ηk+1) a.s.,
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it suffices to prove (4.4). Furthermore, when doing so we can and do replace btc with
integer n.

Note that

lim supn→∞
max0≤k≤n Sk
(n log log n)1/2

= 21/2σ a.s.; (4.6)

see, for instance, p. 439 in [4]. Recall the notation ζ = log η and ζk = log ηk for k ∈ N.
The assumption (1.13) in combination with the Borel-Cantelli lemma entails

lim
n→∞

(n log log n)−1/2ζ+n = 0 a.s.

and thereupon limn→∞(n log log n)−1/2 max1≤k≤n+1 ζ
+
k = 0 a.s. Using the latter, (4.6)

and

max
0≤k≤n

(Sk + ζk+1) ≤ max
0≤k≤n

Sk + max
1≤k≤n+1

ζ+k a.s.

we infer

lim supn→∞
max0≤k≤n (Sk + ζk+1)

(n log log n)1/2
≤ 21/2σ a.s.

Fix any δ ∈ (0, 1), put xn(δ) := (1 − δ)21/2σ(n log log n)1/2 for n ≥ 3 and define the
event

An = An(δ) := { max
0≤k≤n

(Sk + ζk+1) > xn(δ)}, n ≥ 3.

Our purpose is to show that

P{An i.o.} = 1.

Here, as usual, ‘i.o.’ is a shorthand for ‘infinitely often’ and {An i.o.} = ∩n≥3 ∪k≥n Ak.
Pick any γ ∈ R satisfying P{ζ > γ} > 0. For n ≥ 3, put τn := inf{k ≤ n : Sk > xn(δ)− γ}
on the event {max0≤k≤n Sk > xn(δ) − γ} and τn := +∞ on the complementary event.
Now define the events

Bn = Bn(δ) := { max
0≤k≤n

Sk > xn(δ)− γ} and Cn = Cn(δ) := {ζτn+1 > γ}, n ≥ 3.

Observe that, for each n ≥ 3, Bn ∩ Cn ⊆ An, whence{∑
n≥3

1Bn∩Cn =∞
}

= {Bn ∩ Cn i.o.} ⊆ {An i.o.}.

For n ≥ 3, denote by Fn the σ-algebra generated by ((ξk, ζk))1≤k≤n. In view of

ζτn+1 1{τn≤n} = ζ1 1{xn(δ)<γ}+

n∑
k=1

ζk+1 1{max0≤j≤k−1 Sj≤xn(δ)−γ, Sk>xn(δ)−γ},

we conclude that Bn ∩ Cn ∈ Fn+1. Hence, by the conditional Borel-Cantelli lemma; see,
for instance, Theorem 5.3.2 on p. 240 in [10],

P
{∑
n≥3

1Bn∩Cn =∞
}

= P
{∑
n≥3

P{Bn ∩ Cn|Fn} =∞
}
.

Since ∑
n≥3

P{Bn ∩ Cn|Fn} = P{ζ > γ}
∑
n≥3

1Bn

and (4.6) secures P{
∑
n≥3 1Bn = ∞} = 1, we infer P{Bn ∩ Cn i.o.} = 1 = P{An i.o.}.

The proof of Theorem 4.2 is complete.
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Remark 4.3. If (1.3) holds and (1.13) does not hold, then both (4.4) and (4.5) fail to hold.
As a consequence, so does (1.14) as follows from Proposition 4.1. By the Borel-Cantelli
lemma, if the expectation on the left-hand side of (1.13) is infinite, then

lim supn→∞
max1≤k≤n+1 ζk

(n log log n)2
= lim supn→∞

max1≤k≤n+1 ζ
+
k

(n log log n)2
= +∞ a.s.

Using this, relation (4.6), applied to (−Sk) instead of Sk, and

max
0≤k≤n

(Sk + ζk+1) ≥ max
1≤k≤n+1

ζk − max
0≤k≤n

(−Sk) a.s.

we infer

lim supn→∞
max0≤k≤n (Sk + ζk+1)

(n log log n)2
= +∞ a.s.

Proof of Theorem 1.8. Both parts of the theorem will be proved by an application of
Proposition 4.1. In addition, we find it instructive to give an alternative, more proba-
bilistic proof of the relation lim supa→0+ ≤ 1 a.s. in part (b) which takes advantage of
formula (1.16).

(b) In the setting of Proposition 4.1, let µ be a random measure defined by

µ([0, t]) :=

∫ t

0

eB(s)ds, t ≥ 0,

and put ψ(x) := x/ log log x for x ≥ x0, where x0 > e is chosen to ensure that ψ, hence
x 7→ x2/ log log x, are strictly increasing and continuous on (x0,∞). We intend to show
that

lim supt→∞
log
∫ t
0

eB(s)ds

(t log log t)1/2
= 21/2 a.s. (4.7)

On the one hand, log
∫ t
0

eB(s)ds ≤ log t+ maxs∈[0, t] B(s) a.s. On the other hand, let τt ∈
[0, t] denote any (random) point satisfying B(τt) = maxs∈[0, t] B(s) a.s. Then, given ε > 0

there exists a random δ ∈ (0, 1) such that B(u) ≥ maxs∈[0, t] B(s)− ε whenever u ∈ (τt −
δ, τt + δ) ∩ (0,∞). This yields log

∫ t
0

eB(u)du ≥ log
∫ τt+δ
max(τt−δ, 0) eB(u)du ≥ maxs∈[0, t] B(s)−

ε+ log δ a.s. Now relation (4.7) follows from the two inequalities and

lim supt→∞
maxs∈[0, t] B(s)

(t log log t)1/2
= 21/2 a.s.

For the latter see, for instance, p. 439 in [4].

Formula (4.7) entails an a.s. version of (4.1), with the present choice of µ, ϕ = f ,
A = 21/2 and α = 2. By Proposition 4.1, (4.2) holds with the right-hand side being equal
to 1/2. Hence,

lim supa→0+

log
∫
[0,∞)

e−axµ(dx)

ψ←(1/a)
= 2−1 a.s.,

where ψ← the generalized inverse function of ψ satisfies ψ←(t) ∼ t log log t as t → ∞.
This proves (1.15).

Here is the promised probabilistic proof. Fix any r > 1. In view of (1.16), a distribution
density of r−n

(
log
∫∞
0

eB(s)−r−(n+1)sds− log 2
)

is

x 7→ rne−2r
−1x exp(−e−r

nx)

Γ(2r−(n+1))
, x→∞.
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Hence, for all ε > 0,

P
{
r−n

(
log

∫ ∞
0

eB(s)−r−(n+1)sds− log 2
)
> 2−1r(1 + ε) log log rn

}
=

rn

Γ(2r−(n+1))

∫ ∞
2−1r(1+ε) log(n log r)

e−2r
−1x exp(−e−r

nx)dx

≤ rn

Γ(2r−(n+1))

∫ ∞
2−1r(1+ε) log(n log r)

e−2r
−1xdx

=
1

2r−(n+1)Γ(2r−(n+1))e(1+ε) log(n log r)
∼ 1

n1+ε

as n→∞ having utilized limx→0+ xΓ(x) = 1. Thus, by the Borel-Cantelli lemma,

lim supn→∞
2 log

∫∞
0

eB(s)−r−(n+1)sds

rn log log rn
≤ r a.s.

For each a ∈ (0, 1] there exists n ∈ N0 such that a ∈ [r−(n+1), r−n] and, by monotonicity,
for such a,

2a log
∫∞
0

eB(s)−asds

log log(1/a)
≤

2 log
∫∞
0

eB(s)−r−(n+1)sds

rn log(n log r)
a.s.,

whence lim supa→0+
2a log

∫∞
0

eB(s)−asds

log log(1/a) ≤ 1 a.s. because r > 1 is arbitrary.
(a) Let µ be a random measure defined by

µ([0, t]) :=

btc∑
k=0

eSkηk+1, t ≥ 0

and take the same ϕ and ψ as in the proof of part (a), so that α = 2. By Theorem 4.2,
relation (4.5) holds. With this at hand, the rest of the proof mimics that of part (b).
Note that there is the additional factor σ which was absent in the proof of part (a). In
particular, A = 21/2σ rather than 21/2.

Proof of Corollary 1.9. Under the assumptions of Theorem 1.8(a), invoking (1.6) yields

a log Y (a)

log log 1/a

P−→ 0, a→ 0 + .

This in combination with the inequality log Y (a) ≥ 0 a.s. for small a > 0, which is a
consequence of lima→0+ Y (a) = +∞ a.s., yields

lim inf
a→0+

a log Y (a)

log log(1/a)
= 0 a.s.

In the setting of Theorem 1.8(b), relation (1.17) entails

lim infa→0+

a log
∫∞
0

eB(s)−asds

log log 1/a
= 0 a.s.

Both claims follow from the last two limit relations and Theorem 1.8 with the help of the
intermediate value theorem for continuous functions.
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