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Abstract

Let (ξ1, η1), (ξ2, η2), . . . be independent identically distributed R2-valued random vec-
tors. We prove a strong law of large numbers, a functional central limit theorem and a
law of the iterated logarithm for the convergent perpetuities

∑
k≥0 b

ξ1+...+ξkηk+1 as
b→ 1−. Under the standard actuarial interpretation, these results correspond to the
situation when the actuarial market is close to the customer-friendly scenario of no
risk.
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1 Introduction

Let (ξ1, η1), (ξ2, η2), . . . be independent copies of an R2-valued random vector (ξ, η)

with arbitrarily dependent components. Denote by (Sk)k∈N0 (as usual, N0 := N∪{0}) the
standard random walk with jumps ξk defined by S0 := 0 and Sk := ξ1 + . . .+ ξk for k ∈ N.
Whenever a random series

∑
k≥0 e

−Skηk+1 converges a.s., its sum is called perpetuity
because of the following actuarial application. Assuming, for the time being, that ξ and η
are a.s. positive, we can interpret ηk and e−ξk as the planned payment and the discount
factor (risk) for year k, respectively. Then

∑
k≥0 e

−Skηk+1 can be thought of as ‘the
present value of a permanent commitment to make a payment ... annually into the future
forever’ (the phrase borrowed from p. 1196 in [13]). When studying the aforementioned
random series from a purely mathematical viewpoint, the one-sided assumptions are
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Discounted convergent perpetuities

normally omitted whereas the term ‘perpetuity’ is still used. See the books [7] and [16]
for surveys of the area of perpetuities from two different perspectives.

In the present paper we investigate the asymptotic behavior as b → 1− of the
convergent series

∑
k≥0 b

Skηk+1 that we call discounted convergent perpetuity. We
intend to prove the basic limit theorems for the discounted convergent perpetuities:
a strong law of large numbers, a functional central limit theorem and a law of the
iterated logarithm. Getting back to the actuarial interpretation, these results describe
the fluctuations of the present value when the actuarial market is close to the customer-
friendly scenario of no risk.

A sufficient condition for the almost sure (a.s.) absolute convergence of the random
series

∑
k≥0 b

Skηk+1 with fixed b ∈ (0, 1) is Eξ ∈ (0,∞) and E log+ |η| < ∞, see, for
instance, Theorem 2.1 in [13]. This sufficient condition holds, that is, the discounted
perpetuity is well-defined for all b ∈ (0, 1), under the assumptions of all our results to be
formulated soon.

We start with a strong law of large numbers.

Theorem 1.1. Assume that µ := Eξ ∈ (0,∞) and E|η| <∞. Then

lim
b→1−

(1− b)
∑
k≥0

bSkηk+1 = µ−1m a.s., (1.1)

where m := Eη.

Throughout the paper we write
P→ to denote convergence in probability, and⇒ and

d−→ to denote weak convergence in a function space and weak convergence of one-
dimensional distributions, respectively. Also, we denote by D(0,∞) the Skorokhod space
of right-continuous functions defined on (0,∞) with finite limits from the left at positive
points. We proceed by giving a functional central limit theorem.

Theorem 1.2. Assume that µ = Eξ ∈ (0,∞), Eη = 0 and s2 := Var η ∈ (0,∞). Then, as
b→ 1−, (

(1− b2)1/2
∑
k≥0

buSkηk+1

)
u>0

⇒ (2s2µ−1)1/2

(∫
[0,∞)

e−uydB(y)

)
u>0

(1.2)

in the J1-topology on D(0,∞), where (B(t))t≥0 is a standard Brownian motion.

Remark 1.3. The limit process in Theorem 1.2 is an a.s. continuous Gaussian process
on (0,∞) with covariance

E

∫
[0,∞)

e−uydB(y)

∫
[0,∞)

e−vydB(y) =
1

u+ v
, u, v > 0. (1.3)

Such a process has appeared in the recent articles [8], [17] and [18]. The latter paper
provides additional references.

Putting in (1.2) u = 1 and using (1.3) with u = v = 1 we obtain a one-dimensional
central limit theorem.

Corollary 1.4. Under the assumptions of Theorem 1.2, as b→ 1−,

(1− b2)1/2
∑
k≥0

bSkηk+1
d−→ (s2µ−1)1/2 Normal(0, 1),

where Normal(0, 1) denotes a random variable with the standard normal distribution.

Finally, we are interested in the rate of a.s. convergence in Theorem 1.1 when m = 0

which is expressed by the law of the iterated logarithm. A hint concerning the form of
this law is given by the central limit theorem, Corollary 1.4. For a family (xt) we denote
by C((xt)) the set of its limit points.
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Discounted convergent perpetuities

Theorem 1.5. Assume that µ = Eξ ∈ (0,∞), Eη = 0 and s2 = Var η ∈ (0,∞). Then

lim supb→1−

( 1− b2

log log 1
1−b2

)1/2∑
k≥0

bSkηk+1 = (2s2µ−1)1/2 a.s.,

lim infb→1−

( 1− b2

log log 1
1−b2

)1/2∑
k≥0

bSkηk+1 = −(2s2µ−1)1/2 a.s. (1.4)

In particular,

C

((( 1− b2

2s2µ−1 log log 1
1−b2

)1/2∑
k≥0

bSkηk+1 : b ∈ ((1− e−1)1/2, 1)
))

= [−1, 1] a.s.

2 Related literature

Random power series. A random power (or geometric) series
∑
k≥0 b

kηk+1 for b ∈ (0, 1)

is a rather particular case of a discounted convergent perpetuity which corresponds to
the degenerate random walk Sk = k for k ∈ N0. In this section we first discuss known
counterparts of our main results for the random power series.
Law of large numbers. Under the assumption E|η| < ∞, the following strong law of
large numbers can be found in Theorem 1 of [19]

lim
b→1−

(1− b)
∑
k≥0

bkηk+1 = m a.s., (2.1)

where m = Eη.
Central limit theorem. Under the assumption E|η|3 < ∞ Theorem 1 in [12] proves a
Berry-Esséen inequality which entails

(1− b2)1/2
(∑
k≥0

bkηk+1 −
m

1− b

)
d−→ sNormal(0, 1), b→ 1−,

where s2 = Var η ∈ (0,∞). Theorem 4.1 in [25] is a functional limit theorem in the Sko-

rokhod space for the process (
∑b(1−b)−1tc
k=0 bkηk+1)t≥0, properly normalized and centered,

as b→ 1−. Here and hereafter, bxc denotes the integer part of real x. The corresponding
limit process is a time-changed Brownian motion.
Law of iterated logarithm. It was proved in Theorem 3 of [11] that

lim supb→1−

( 1− b2

log log 1
1−b2

)1/2∑
k≥0

bkηk+1 = 21/2s

for centered bounded ηk with variance s2. In Theorem 2 of [19] this limit relation was
stated without proof, for not necessarily bounded ηk. Our Theorem 1.5 is an analogue
of Theorem 1.1 in [5] dealing with random power series. In Theorem 1.1 of [22] the
sequence (ηk)k∈N is stationary, conditionally centered and ergodic with Eη21 < ∞. In
this more general setting the authors prove a counterpart of (1.4) for the corresponding
random power series. Another proof in both settings based on a strong approximation
result is given in Theorem 2.1 of [26]. See also [10] and [23] for related results.

Although a random power series is a toy example of perpetuities, transferring results
from the former to the latter may be a challenge. To justify this claim, we only mention
that while necessary and sufficient conditions for the a.s. convergence of random power
series can be easily obtained (just use the Cauchy root test in combination with the
Borel-Cantelli lemma), the corresponding result for perpetuities is highly non-trivial,
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Discounted convergent perpetuities

see Theorem 2.1 in [13] and its proof. The reason is clear: the random power series
is a weighted sum of independent random variables, whereas it is not the case for
perpetuities.

The investigation of (general) weighted sums of independent identically distributed
random variables has been and still is a rather popular trend of research. We refrain
from giving a survey and only mention recent contributions [1, 2] in which a random
Dirichlet series is analyzed.
Discounted perpetuities. To the best of our knowledge, Theorems 1.1, 1.2 and 1.5
are new. Under the additional assumption Eξ2 < ∞ (we only require Eξ ∈ (0,∞)) our
Corollary 1.4 follows from Theorem 6.1 in [24] which we state as Proposition 2.1 for the
reader’s convenience.

Proposition 2.1. Assume that µ = Eξ ∈ (0,∞), σ2 = Var ξ ∈ [0,∞), s2 = Var η ∈ [0,∞),
σ2 + s2 > 0. Then

α−1/2
(∑
k≥1

e−αSk−1ηk − αmµ−1
)

d−→ vNormal(0, 1), α→∞,

where Normal(0, 1) denotes a random variable with the standard normal distribution,
m = Eη, v2 := 2−1σ2µ−3m2 + γmµ−2 + 2−1s2µ−1 and γ := Eξη − µm ∈ R.

We stress that our idea of proof of Theorem 1.2 is different from Vervaat’s. Also,
we note that in Theorem 2 of [9] the method of moments is employed for proving a
(one-dimensional) central limit theorem for

∑
k≥0 b

Sk as b→ 1− under the assumptions
ξ ≥ 0 a.s. and Eξp <∞ for all p > 0.

3 Proof of Theorem 1.1

We shall use a fragment of Theorem 5 on p. 49 in [14] that we give in a form adapted
to our setting.

Lemma 3.1. Let (ck(b))k∈N be a sequence of real-valued functions defined on (0, 1) and
(sk)k∈N a convergent sequence of real numbers. Assume that
(i)
∑
k≥1 |ck(b)| <∞ for all b ∈ (0, 1) and that, for some b0 ∈ (0, 1) and some A > 0 which

does not depend on b,
∑
k≥1 |ck(b)| ≤ A for all b ∈ (b0, 1);

(ii) limb→1− ck(b) = 0 for all k ∈ N;
(iii) limb→1−

∑
k≥1 ck(b) = 1.

Then t(b) :=
∑
k≥1 ck(b)sk converges for all b ∈ (0, 1). Furthermore, if limn→∞ sn =

s ∈ R, then limb→1− t(b) = s.

Proof of Theorem 1.1. We first prove that

lim
b→1−

(1− b)
∑
k≥0

bSk = µ−1 a.s. (3.1)

For x ∈ R, put M(x) = #{n ≥ 0 : Sn ≤ x}. Since limn→∞ Sn = +∞ a.s., we have
M(x) <∞ a.s. Furthermore, by Theorem B in [20], limx→∞ x−1M(x) = µ−1 a.s. Hence,
given ε > 0 there exists an a.s. finite x0 > 0 such that |x−1M(x) − µ−1| ≤ ε whenever
x ≥ x0. Write ∑

k≥0

bSk =
∑
k≥0

bSk 1{Sk≤x0}+

∫
(x0,∞)

bxdM(x).

The number of summands in the sum on the right-hand side is a.s. finite, for it is equal
to M(x0), whence limb→1−

∑
k≥0 b

Sk 1{Sk≤x0} =M(x0) a.s. Integration by parts yields∫
(x0,∞)

bxdM(x) + bx0M(x0) = | log b|
∫ ∞
x0

bxM(x)dx ≤ (µ−1 + ε)bx0(1 + | log b|x0)/| log b|.
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Discounted convergent perpetuities

Thus,
lim supb→1−(1− b)

∑
k≥0

bSk ≤ µ−1 a.s.

The proof of the converse inequality for the limit inferior is completely analogous.
Passing to the proof of (1.1), we use summation by parts to obtain, for b ∈ (0, 1) and

` ∈ N, ∑̀
k=1

bSk−1ηk =

`−1∑
k=1

(bSk−1 − bSk)Tk + bS`−1T`, (3.2)

where T0 := 0 and Tk := η1 + . . .+ ηk for k ∈ N. We have lim`→∞ bS`−1T` = 0 a.s. because
by the strong law of large numbers the first factor decreases to zero exponentially fast,
whereas the second factor exhibits at most linear growth. Hence,∑

k≥1

bSk−1ηk =
∑
k≥1

k(bSk−1 − bSk)(k−1Tk).

We are going to apply Lemma 3.1 with ck(b) := µ(1 − b)k(bSk−1 − bSk) for k ∈ N and
b ∈ (0, 1) and sk := k−1Tk for k ∈ N. While (ii) of Lemma 3.1 holds trivially (a.s.), (iii) is a
consequence of

∑
k≥1 ck(b) = µ(1 − b)

∑
k≥0 b

Sk and (3.1). Let us prove (i). By another
appeal to the strong law of large numbers, given ε ∈ (0, µ), there exists a random integer
N such that bSk−1 ≤ b(µ−ε)(k−1) whenever k ≥ N + 1. Fix any b1 ∈ (0, 1). By the mean
value theorem for differentiable functions, for k ≥ N + 1 and b ∈ (b1, 1),

|bSk−1 − bSk | ≤ max(bSk−1 , bSk)| log b||ξk| ≤ b−(µ−ε)1 b(µ−ε)k| log b||ξk|. (3.3)

Using the inequality xe−x ≤ 2e−x/2 for x ≥ 0 we infer, for k ≥ N + 1 and b ∈ (b1, 1),

k|bSk−1 − bSk | ≤ 2(µ− ε)−1b−(µ−ε)1 b(µ−ε)k/2|ξk| =: cb(µ−ε)k/2|ξk|.

With this at hand, for b ∈ (b1, 1),

(µ(1− b))−1
∑
k≥1

|ck(b)| =
∑
k≥1

k|bSk−1 − bSk | ≤ 2

N∑
k=1

k +
∑

k≥N+1

k|bSk−1 − bSk | ≤ N(N + 1)

+ c
∑
k≥1

b(µ−ε)k/2|ξk|.

In view of (2.1), limb→1−(1− b)
∑
k≥1 b

(µ−ε)k/2|ξk| = 2|Eξ|/(µ− ε) a.s. This justifies (i) in
the present setting.

By the strong law of large numbers limk→∞ sk = limk→∞(k−1Tk) = m a.s. Invoking
Lemma 3.1 we arrive at (1.1). The proof of Theorem 1.1 is complete.

Later on, we shall need the following result. Its proof is omitted, for it is analogous
to the proof of Theorem 1.1.

Lemma 3.2. Assume that E|η| <∞. Let (xn)n∈N and (yn)n∈N be sequences of numbers
in (0, 1) approaching 1 as n→∞. Let λ > 0 and M : (0, 1)→ N be a function satisfying
limn→∞M(xn)(1− yλn) = a ∈ [0,∞]. If a =∞, then

lim
n→∞

1− yλn
y
λM(xn)
n

∑
k≥M(xn)+1

yλkn ηk = m a.s.,

where m = Eη; if a ∈ [0,∞), then

lim
n→∞

(1− yλn)
∑

k≥M(xn)+1

yλkn ηk = me−a a.s.

Clearly, these limit relations also hold if we put formally xn = yn = b and let b→ 1−,
that is, if one passes to the limit continuously.
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Discounted convergent perpetuities

4 Proof of Theorem 1.2

We shall prove weak convergence of the finite-dimensional distributions and then
tightness.

4.1 Proof of weak convergence of the finite-dimensional distributions in (1.2)

We shall use the Cramér-Wold device. Namely, we intend to show that, for any ` ∈ N,
any real α1, . . . , α` and any 0 < u1 < . . . < u` <∞, as b→ 1−,

(1− b2)1/2
∑̀
i=1

αi
∑
k≥0

buiSkηk+1
d−→ (2s2µ−1)1/2

∑̀
i=1

αi

∫
[0,∞)

e−uiydB(y). (4.1)

For k ∈ N, denote by Fk the σ-algebra generated by (ξj , ηj)1≤j≤k. We shall write
Ek(·) for E(·|Fk). For each b ∈ (0, 1), the sequence

(
(1− b2)1/2

∑̀
i=1

αi

n−1∑
k=0

buiSkηk+1,Fn
)
n∈N

forms a martingale (the martingale is not necessarily integrable, for the situation that
Ebξ =∞ is not excluded). By the martingale central limit theorem (Theorem 2.5(a) in
[15]), (4.1) follows if we can show that

(1− b2)
∑
k≥0

Ek

(∑̀
i=1

αib
uiSkηk+1

)2
P→ 2s2µ−1E

(∑̀
i=1

αi

∫
[0,∞)

e−uiydB(y)
)2
, b→ 1−

(4.2)
and, for all ε > 0,

(1− b2)
∑
k≥0

Ek

(∑̀
i=1

αib
uiSkηk+1

)2
1{(1−b2)1/2|

∑`
i=1 αib

uiSkηk+1|>ε}
P→ 0, b→ 1− . (4.3)

We start by proving (4.2):

(1− b2)
∑
k≥0

Ek

(∑̀
i=1

αib
uiSkηk+1

)2
= s2(1− b2)

(∑̀
i=1

α2
i

∑
k≥0

b2uiSk + 2
∑

1≤i<j≤`

αiαj
∑
k≥0

b(ui+uj)Sk
)
.

By Theorem 1.1, this converges a.s., as b→ 1−, to

s2µ−1
(∑̀
i=1

α2
iu
−1
i + 4

∑
1≤i<j≤`

αiαj(ui + uj)
−1
)
= 2s2µ−1E

(∑̀
i=1

αi

∫
[0,∞)

e−uiydB(y)
)2
,

where the last equality follows from (1.3).
Passing to the proof of (4.3) we first conclude that, in view of

(a1 + . . .+ a`)
2 1{|a1+...+a`|>y} ≤ (|a1|+ . . .+ |a`|)2 1{|a1|+...+|a`|>y}

≤ `2(|a1| ∨ . . . ∨ |a`|)2 1{`(|a1|∨...∨|a`|)>y} ≤ `
2(a21 1{|a1|>y/`}+ . . .+ a2` 1{|a`|>y/`})

which holds for a1, . . . , a` ∈ R and y > 0, it suffices to show that, for all ε > 0 and u > 0,

(1− b2)
∑
k≥0

Ek(b
uSkηk+1)

2 1{(1−b2)1/2buSk |ηk+1|>ε}
P→ 0, b→ 1− .
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Put T := sup{n ∈ N0 : Sn ≤ 0} and note that T < ∞ a.s. as a consequence of
limn→∞ Sn = +∞ a.s. We infer

(1−b2)
T∑
k=0

Ek(b
uSkηk+1)

2 1{(1−b2)1/2buSk |ηk+1|>ε}≤s
2(1−b2)

T∑
k=0

b2uSk → 0 a.s. as b→ 1−.

To proceed, observe that, for k ≥ T + 1, we have buSk ≤ 1, whence

{(1− b2)1/2buSk |ηk+1| > ε} ⊆ {|ηk+1| > ε(1− b2)−1/2}.

This yields

(1− b2)
∑

k≥T+1

Ek(b
uSkηk+1)

2 1{(1−b2)1/2buSk |ηk+1|>ε}

≤ Eη2 1{|η|>ε(1−b2)−1/2}(1− b2)
∑
k≥0

b2uSk → 0 a.s. as b→ 1− .

The limit relation is justified by the fact that while the truncated second moment con-
verges to 0, limb→1−(1− b2)

∑
k≥0 b

2uSk = (µu)−1 a.s. by Theorem 1.1.
For the proof of Proposition 5.7 we need the following one-dimensional central limit

theorem.

Lemma 4.1. Let M : (0, 1) → N satisfy limb→1−M(b) = ∞. Under the assumptions of
Theorem 1.2, as b→ 1−,

(M(b)∑
k=0

b2µk
)−1/2M(b)∑

k=0

bSkηk+1
d−→ (s2µ−1)1/2 Normal(0, 1).

After noting that
∑M(b)
k=0 b2Sk ∼

∑M(b)
k=0 b2µk a.s. as b→ 1− by the strong law of large

numbers for random walks, a simplified version of the proof given above applies. We
omit details.

4.2 Proof of tightness in (1.2)

Fix any c, d ∈ (0,∞), c < d. We have to prove tightness on [c, d].
For each δ ∈ (0, µ) and k ∈ N0, define the event Rk(δ) := {|Sk − µk| > δk}. We first

check that
lim
b→1−

(1− b2)1/2 sup
u∈[c, d]

∣∣∣∑
k≥0

buSk 1Rk(δ) ηk+1

∣∣∣ = 0 a.s. (4.4)

Indeed, the supremum does not exceed a.s.∑
k≥0

bcSk 1{Sk≥0} 1Rk(δ) |ηk+1|+
∑
k≥0

bdSk 1{Sk<0} 1Rk(δ) |ηk+1|.

Here, each summand converges a.s. as b → 1− to an a.s. finite random variable.
Furthermore, the number of nonzero summands is a.s. finite in view of

∑
k≥0 1Rk(δ) <∞

a.s. which is a consequence of the strong law of large numbers. Thus, (4.4) has been
proved.

Next, we intend to show that, for any u, v ∈ [c, d] and b < 1 close to 1,

(1− b2)E
(∑
k≥0

(buSk − bvSk)1Rck(δ) ηk+1

)2
≤ A(u− v)2 (4.5)

for a constant A which does not depend on u and v. Here, Rck(δ) denotes the complement
ofRk(δ), that is,Rck(δ) = {|Sk−µk| ≤ δk}. To this end, we observe thatRck(δ) ⊆ {Sk > 0}
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and then invoking the mean value theorem for differentiable functions we obtain a.s. on
Rck(δ)

|buSk − bvSk | ≤ bcSk | log b||u− v|Sk ≤ (µ+ δ)bc(µ−δ)k| log b||u− v|k

≤ 2(µ+ δ)(ce(µ− δ))−1b(c/2)(µ−δ)k|u− v|.

We have used the inequality
sup
x>0
| log b|xbx ≤ 1/e

for the last step. It remains to note that

E
(∑
k≥0

(buSk − bvSk)1Rck(δ) ηk+1

)2
= s2E

∑
k≥0

(buSk − bvSk)2 1Rck(δ)

≤ 4s2(µ+ δ)2(ce(µ− δ))−2
∑
k≥0

bc(µ−δ)k(u− v)2

and that
lim
b→1−

(1− b2)
∑
k≥0

bc(µ−δ)k = 2(c(µ− δ))−1.

Thus, (4.5) holds with A = 16s2(µ+ δ)2e−2c−3(µ− δ)−3. By formula (12.51) on p. 95 in
[3], the distributions of (

(1− b2)1/2
∑
k≥0

buSk 1Rck(δ) ηk+1

)
u∈[c, d]

are tight. The proof of Theorem 1.2 is complete.

5 Proof of Theorem 1.5

Our argument follows closely the paths of (slightly different) proofs of Theorem 1.1 in
[5] and Theorem 1.1 in [22]. In the cited references Sn = n, n ∈ N0, that is, the random
walk (Sn)n∈N0 is deterministic. Of course, we know that in our setting, for large n, Sn
is approximately µn by the strong law of large numbers. Thus, an additional effort is
needed to justify the replacement of Sn with µn.

We start by proving an intermediate result.

Proposition 5.1. Under the assumptions of Theorem 1.5,

lim supb→1−

( 1− b2

log log 1
1−b2

)1/2∑
k≥0

bSkηk+1 ≤ (2s2µ−1)1/2 a.s. (5.1)

and

lim infb→1−

( 1− b2

log log 1
1−b2

)1/2∑
k≥0

bSkηk+1 ≥ −(2s2µ−1)1/2 a.s. (5.2)

We can and do assume that µ = s2 = 1. To see this, replace bSk−1ηk with bSk−1/µηk/s

and note that 1− b2µ ∼ µ(1− b2) as b→ 1−. Pick any δ ∈ (0, 1). For b ∈ (0, 1) and such a
δ, put

N2, δ(b) :=
⌊ 1

1− b2δ
log

1

1− b2δ
⌋

and, for b ∈ [(1− e−1)1/2, 1), put

f(b) :=
(
2

1

1− b2
log log

1

1− b2
)−1/2

.

We prove Proposition 5.1 via a sequence of lemmas.
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Lemma 5.2. limb→1− f(b)
∑
k≥N2, δ(b)

bSk−1ηk = 0 a.s.

Proof. Pick any increasing sequence (bn)n∈N of positive numbers satisfying limn→∞ bn =

1,
bn+1 − bn ∼ c1(1− bn)1+c2 , n→∞ (5.3)

for some c1, c2 > 0 and ∑
n≥n0

(1− bn) <∞ (5.4)

for some n0 ∈ N. One particular sequence satisfying these assumptions is given by
bn = 1− n−2 for n ∈ N (with c1 = 2 and c2 = 1/2 in (5.3)). Note that (5.3) entails

lim
n→∞

(1− bn+1)/(1− bn) = 1.

Suppose we can prove that, for all ε > 0,

I :=
∑
n≥n0

P
{

sup
b∈[bn, bn+1]

∣∣∣ ∑
k≥N2, δ(b)

bSk−1ηk

∣∣∣ > ε/f(bn)
}
<∞.

Then, by the Borel–Cantelli lemma,

sup
b∈[bn, bn+1]

∣∣∣ ∑
k≥N2, δ(b)

bSk−1ηk

∣∣∣ ≤ ε/f(bn)
for n large enough a.s. Since f is nonnegative and decreasing on [(1 − e−1)1/2, 1), we
have, for all large enough n,∣∣∣ ∑

k≥N2, δ(b)

bSk−1ηk

∣∣∣ ≤ sup
b∈[bn, bn+1]

∣∣∣ ∑
k≥N2, δ(b)

bSk−1ηk

∣∣∣ ≤ ε/f(bn) ≤ ε/f(b)
a.s. whenever b ∈ [bn, bn+1]. Hence, lim supb→1−f(b)

∑
k≥N2, δ(b)

bSk−1ηk ≤ ε a.s. which
entails the claim.

Since the function N2, δ is nondecreasing on (0, 1) we obtain

sup
b∈[bn, bn+1]

∣∣∣ ∑
k≥N2, δ(b)

bSk−1ηk

∣∣∣ ≤ sup
b∈[bn, bn+1]

∑
k≥N2, δ(bn)

bSk−1 |ηk|.

Further, by the strong law of large numbers, for large n, the latter is estimated from
above by

sup
b∈[bn, bn+1]

∑
k≥N2, δ(bn)

bδ(k−1)|ηk| ≤
∑

k≥N2, δ(bn)

b
δ(k−1)
n+1 E|ηk|+

∑
k≥N2, δ(bn)

b
δ(k−1)
n+1 (|ηk| − E|ηk|).

Thus, noting that E|ηk| ≤ 1,

I ≤
∑
n≥n0

1{
∑
k≥N2, δ(bn) b

δ(k−1)
n+1 >ε/(2f(bn))}

+
∑
n≥n0

P
{ ∑
k≥N2, δ(bn)

b
δ(k−1)
n+1 (|ηk| − E|ηk|) > ε/(2f(bn))

}
. (5.5)

Using (5.3) and − log x = (1− x) +O((1− x)2) as x→ 1− we obtain

f(bn)
∑

k≥N2, δ(bn)

b
δ(k−1)
n+1 = f(bn)

b
δ(N2, δ(bn)−1)
n+1

1− bδn+1

∼ f(bn)
(1− b2δn )1/2

1− bδn

∼ (1− b2n)1/2

(2 log log(1/(1− b2n)))1/2
2δ−1/2

(1− b2n)1/2
→ 0, n→∞.
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This proves that the first series on the right-hand side of (5.5) trivially converges, for
it contains finitely many nonzero summands. By Markov’s inequality and (5.3), the
probability in the second series is upper bounded by

4ε−2f2(bn)
∑

k≥N2, δ(bn)

b
2δ(k−1)
n+1 = 4ε−2f2(bn)

b
2δ(N2, δ(bn)−1)
n+1

1− b2δn+1

∼ 2ε−2
1− b2n

log log(1/(1− b2n))
, n→∞.

In view of (5.4), this is the general term of a convergent series. Hence, the second series
on the right-hand side of (5.5) converges. The proof of Lemma 5.2 is complete.

For b ∈ (0, 1) close to 1, δ as above and θ > 0, put

N1, δ, θ(b) :=
⌊ 1 + θ

1− b2δ
log log

1

1− b2δ
⌋
.

Lemma 5.3. limb→1− f(b)
∑N2, δ(b)

k=N1, δ, θ(b)+1 b
Sk−1ηk = 0 a.s.

Proof. Similarly to (3.2), summation by parts yields

N2, δ(b)∑
k=N1, δ, θ(b)+1

bSk−1ηk =

N2, δ(b)−1∑
k=N1, δ, θ(b)+1

(bSk−1−bSk)Tk+bSN2, δ(b)−1TN2, δ(b)−b
SN1, δ, θ(b)TN1, δ, θ(b),

where, as in the proof of Theorem 1.1, Tk = η1 + . . .+ ηk for k ∈ N. By the strong law of
large numbers, for b close to 1,

|bSN2, δ(b)−1TN2, δ(b) − b
SN1, δ, θ(b)TN1, δ, θ(b)| ≤ b

δ(N2, δ(b)−1)|TN2, δ(b)|+ bδN1, δ, θ(b)|TN1, δ, θ(b)|.

One can check that

bδN1, δ, θ(b) ∼
(
log

1

1− b2δ
)−(1+θ)/2

and bδN2, δ(b) ∼ (1− b2δ)1/2 a.s. as b→ 1− .
(5.6)

Further, recall that, as `→∞,

|T`| ≤ sup
k≤`
|Tk| = O

(
(` log log `)1/2

)
a.s. (5.7)

by the law of the iterated logarithm for standard random walks. Using this limit relation
we infer

f(b)|bSN2, δ(b)−1TN2, δ(b) − b
SN1, δ, θ(b)TN1, δ, θ(b)| = O(((1− b) log(1/(1− b)))1/2)

+O
(( log log(1/(1− b))

(log(1/(1− b)))1+θ
)1/2)

→ 0 a.s. as b→ 1− . (5.8)

According to (3.3), for b close to 1,

∣∣∣ N2, δ(b)−1∑
k=N1, δ, θ(b)+1

(bSk−1 − bSk)Tk
∣∣∣ ≤ const | log b|( sup

k≤N2, δ(b)

|Tk|)
∑

k≥N1, δ, θ(b)+1

bδk|ξk|.

With the help of (5.6) we obtain∑
k≥N1, δ, θ(b)+1

bδk|ξk| ∼ E|ξ|b
δN1, δ, θ(b)

1− bδ
∼ E|ξ|

(1− bδ)(log(1/(1− b2δ)))(1+θ)/2
a.s. as b→ 1−
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by an application of Lemma 3.2 with η = |ξ| and a =∞. This in combination with (5.7)
yields

f(b)
∣∣∣ N2, δ(b)−1∑
k=N1, δ, θ(b)+1

(bSk−1−bSk)Tk
∣∣∣ = O

( 1

(log(1/(1− b)))θ/2
)
→ 0 a.s. as b→ 1− . (5.9)

The proof of Lemma 5.3 is complete.

For b ∈ (0, 1) close to 1, put

N2(b) :=
⌊ 1

1− b2
log

1

1− b2
⌋
.

We claim that

lim
b→1−

f(b)

N2, δ(b)∑
k=N2(b)+1

bSk−1ηk = 0 a.s.

For the most part, this follows by repeating the proof of Lemma 5.3 with N2(b) replacing
N1, δ, θ(b), the only changes being that the second summand on the right-hand side of (5.8)
and the right-hand side of (5.9) are O(((1 − b)δ log(1/(1 − b)))1/2) as b → 1−. The last
centered formula in combination with Lemma 5.2 enable us to conclude that

lim
b→1−

f(b)
∑

k≥N2(b)+1

bSk−1ηk = 0 a.s. (5.10)

This limit relation will be used in the proof of Proposition 5.7.
Denote by F0 the trivial σ-algebra and recall that, for k ∈ N, Fk denotes the σ-algebra

generated by (ξj , ηj)1≤j≤k and that, for k ∈ N0, we write Ek(·) for E(·|Fk).
Lemma 5.4. For all ρ > 0,

lim
b→1−

f(b)

N1, δ, θ(b)∑
k=1

bSk−1ηk 1Sk(b) = 0 a.s. (5.11)

and

lim
b→1−

f(b)

N1, δ, θ(b)∑
k=1

bSk−1Ek−1(ηk 1Sk(b)) = 0 a.s., (5.12)

where Sk(b) := {|ηk| > ρb−Sk−1((1− b2δ) log log(1/(1− b2δ)))−1/2}.

Proof. We only give a detailed proof of (5.11) and then explain which modifications are
needed for a proof of (5.12).
Proof of (5.11). For b ∈ (0, 1) and the same δ ∈ (0, 1) as before, put

Nδ(b) :=
⌊ 1

1− b2δ
⌋
.

Plainly, for all ρ > 0,

lim
b→1−

f(b)

2∑
k=1

bSk−1ηk 1{|ηk|>ρb−Sk−1 ((1−b2δ) log log(1/(1−b2δ)))−1/2} = 0 a.s.

We first show that, for k ≥ 3, b close to 1 and ε > 0 to be defined below,

b−Sk−1

( 1

(1− b2δ) log log(1/(1− b2δ))

)1/2
≥ e−ε

( k

log log k

)1/2
a.s. (5.13)
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Let 3 ≤ k ≤ Nδ(b). The function x 7→ x/ log log x is increasing for large x, whence

1

(1− b2δ) log log(1/(1− b2δ))
≥ k

log log k
.

Further, for 1 ≤ k ≤ Nδ(b),

b−Sk−1 ≥ e(− log b)Sk−1 ≥ e(− log b) inf0≤i≤Nδ(b)−1 Si a.s.

Since limn→∞ Sn = +∞ a.s., we infer | infi≥0 Si| <∞ a.s. and thereupon

lim
b→1−

(log b) inf
1≤i≤Nδ(b)

Si = 0 a.s.

Thus, given ε > 0 there exists a random variable b∗ such that b−Sk−1 ≥ e−ε whenever
3 ≤ k ≤ Nδ(b) and b ∈ (b∗, 1) (of course, b−Sk−1 ≥ 1 a.s. for all k ∈ N provided that ξ ≥ 0

a.s.). Thus, (5.13) does hold true in the present range of k.
Let k ≥ Nδ(b) + 1. By the strong law of large numbers, bSk−1 ≤ bδ(k−1) a.s. for b close

to 1. Put

αk(b) := bδ(k−1)
( k

log log k

)1/2
.

We claim that the sequence (αk(b))k≥Nδ(b)+1 is nonincreasing. Indeed,

αk+1(b)/αk(b) ≤ bδ(1 + 1/k)1/2 ≤ bδ(1 + 1/(2k)) ≤ bδ(1 + (1− b2δ)/2) ≤ 1.

We have used maxb∈[0,1](3b
δ − b3δ) = 2 for the last step. Hence, for b close to 1,

bSk−1

( k

log log k

)1/2
≤ bδ(k−1)

( k

log log k

)1/2
≤ bδNδ(b)

( Nδ(b)

log logNδ(b)

)1/2
≤ bδ(1−b

2δ)−1
( 1

(1− b2δ) log log(1/(1− b2δ))

)1/2
≤ eε

( 1

(1− b2δ) log log(1/(1− b2δ))

)1/2
having utilized limb→1− b

δ(1−b2δ)−1

= e−1/2 for the last inequality. The proof of (5.13) is
complete.

For b ∈ (0, 1), let K(b) be positive integers satisfying limb→1−K(b) = ∞. In view
of (5.13), for b close to 1,∣∣∣K(b)∑

k=3

bSk−1ηk 1Sk(b)

∣∣∣ ≤ eε K(b)∑
k=3

|ηk|1{|ηk|>ρe−ε(k/ log log k)1/2} a.s. (5.14)

and
K(b)∑
k=3

|ηk|1Sk(b) ≤
K(b)∑
k=3

|ηk|1{|ηk|>ρe−ε(k/ log log k)1/2} a.s. (5.15)

It is shown in the proof of Lemma 2.3 in [5] that∑
k≥5

(k log log k)−1/2E(|ηk|1{|ηk|>ρe−ε(k/ log log k)1/2}) <∞ (5.16)

which particularly entails∑
k≥5

(k log log k)−1/2|ηk|1{|ηk|>ρe−ε(k/ log log k)1/2} <∞ a.s.

By Kronecker’s lemma, we obtain

lim
b→1−

(K(b) log logK(b))−1/2
K(b)∑
k=3

|ηk|1{|ηk|>ρe−ε(k/ log log k)1/2} = 0 a.s. (5.17)
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We treat the sums
∑Nδ(b)
k=3 and

∑N1, δ, θ(b)

k=Nδ(b)+1 separately. Relation (5.17) with K(b) =

Nδ(b) implies that, for all ρ > 0,

lim
b→1−

f(b)

Nδ(b)∑
k=1

bSk−1ηk 1Sk(b) = 0 a.s. (5.18)

To deal with the second sum, we write, for b close to 1,

∣∣∣ N1, δ, θ(b)∑
k=Nδ(b)+1

bSk−1ηk 1Sk(b)

∣∣∣ ≤ N1, δ, θ(b)∑
k=Nδ(b)+1

bδ(k−1)|ηk|1Sk(b) = −b
δNδ(b)

Nδ(b)∑
k=1

|ηk|1Sk(b)

+ bδ(N1, δ, θ(b)−1)
N1, δ, θ(b)∑
k=1

|ηk|1Sk(b) +(1− bδ)
N1, δ, θ(b)−1∑
k=Nδ(b)+1

bδ(k−1)
k∑
j=1

|ηj |1Sj(b)

=: I1(b) + I2(b) + I3(b)

having utilized the strong law of large numbers for the inequality and summation by
parts for the first equality.
Analysis of I1. The limit relation limb→1− b

δNδ(b) = e−1/2 together with (5.15) and (5.17)
in which we take K(b) = Nδ(b) proves limb→1− f(b)I1(b) = 0 a.s.
Analysis of I2. Using (5.15) and (5.17) with K(b) = N1, δ, θ(b) we infer

lim
b→1−

(N1, δ, θ(b) log logN1, δ, θ(b))
−1/2

N1, δ, θ(b)∑
k=1

|ηk|1Sk(b) = 0 a.s.

Combining this with the first part of (5.6) we obtain limb→1− f(b)I2(b) = 0 a.s.
Analysis of I3. Write

I3(b) ≤ (1− bδ)( sup
Nδ(b)+1≤k≤N1, δ, θ(b)−1

Tk(b))
∑
k≥3

bδ(k−1)(k log log k)1/2

∼ (π1/2/2)
( log log(1/(1− bδ))

1− bδ
)1/2

( sup
Nδ(b)+1≤k≤N1, δ, θ(b)−1

Tk(b)), b→ 1−,

where

Tk(b) := (k log log k)−1/2
k∑
j=1

|ηj |1Sj(b) .

We have used Corollary 1.7.3 in [4] for the asymptotic equivalence. In view of (5.17)
with K(b) = Nδ(b) + 1 and (5.15), limb→1− supNδ(b)+1≤k≤N1, δ θ(b)−1 Tk(b) = 0 a.s., whence
limb→1− f(b)I3(b) = 0 a.s. The proof of (5.11) is complete.
Proof of (5.12). Similarly to (5.18), we obtain with the help of

∣∣∣K(b)∑
k=3

bSk−1Ek−1(ηk 1Sk(b))
∣∣∣ ≤ eε K(b)∑

k=3

E|ηk|1{|ηk|>ρe−ε(k/ log log k)1/2} a.s.

(a counterpart of (5.14)) and (5.16) that

lim
b→1−

f(b)

Nδ(b)∑
k=1

bSk−1Ek−1(ηk 1Sk(b)) = 0 a.s.

By the same reasoning, we also conclude that limb→1− f(b)I
∗
` (b) = 0 a.s., ` = 1, 2, 3,

where I∗` (b) is a counterpart of I`(b) in which |ηk|1Sk(b) is replaced with Ek−1(|ηk|1Sk(b)).
The proof of Lemma 5.4 is complete.
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As usual, Sck(b) will denote the complement of Sk(b), that is,

Sck(b) = {|ηk| ≤ ρb−Sk−1((1− b2δ) log log(1/(1− b2δ)))−1/2}.

Denote by B the class of increasing sequences (bn)n∈N of positive numbers satisfying
the following properties:
(a) limn→∞ bn = 1 and limn→∞

1−bn+1

1−bn = 1;

(b) limn→∞
bn+1−bn
1−bn

(
log log 1

1−bn

)3/2
= 0;

(c) for all ε > 0,
∑
n≥1

(
log
(

1
1−bn

))−1−ε
<∞.

One can check that any increasing sequence (bn)n∈N of positive numbers satisfying
bn = exp(−(1− (log n)−3)n) for large n belongs to the class B. For instance, for the so
defined bn we have

bn+1 − bn
1− bn

∼ (log n)−3 and log log
1

1− bn
∼ log n, n→∞

which verifies the property (b).
Recall that ‘i.o.’ is a shorthand for ‘infinitely often’ and that, for a sequence of sets

A1, A2, . . .,
{An i.o.} := {∩n≥1 ∪k≥n Ak}.

Lemma 5.5. Let (bn)n∈N ∈ B. Then, for all ε > 0,

P
{N1, δ, θ(bn)∑

k=1

bSk−1
n η̃k(bn) >

(
(2 + ε)N(bn) log logN(bn)

)1/2
i.o.
}
= 0,

where η̃k(b) := ηk 1Sck(b)−Ek−1(ηk 1Sck(b)) for k ∈ N and N(b) := (1− b2)−1 for b ∈ (0, 1).

Proof. The proof below follows the path of the proof of Lemma 3.6 in [22].
We start by showing that

lim supb→1−(1− b2δ)
N1, δ, θ(b)∑
k=1

b2Sk−1Ek−1(η̃
2
k(b)) ≤ δ a.s. (5.19)

(recall that µ = 1 by convention). Indeed, Ek−1(η̃2k(b)) ≤ Eη2k = 1, whence

N1, δ, θ(b)∑
k=1

b2Sk−1Ek−1(η̃
2
k(b)) ≤

∑
k≥0

b2Sk a.s.

By Theorem 1.1 with η = 1 a.s.,

lim
b→1−

(1− b2δ)
∑
k≥0

b2Sk = δ a.s.

which entails (5.19).
For n ∈ N, put

tn :=
( (2 + ε) log logN(bn)

N(bn)

)1/2
and define the event

Bn :=
{N1, δ, θ(bn)∑

k=1

bSk−1
n η̃k(bn) >

(
(2 + ε)N(bn) log logN(bn)

)1/2}
.
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Equivalently,

Bn :=
{
tn

N1, δ, θ(bn)∑
k=1

bSk−1
n η̃k(bn)− (t2n/2)e

4ρ(1+ε)

N1, δ, θ(bn)∑
k=1

b2Sk−1
n Ek−1(η̃

2
k(bn))

> t2nN(bn)
(
1− (e4ρ(1+ε)/(2N(bn)))

N1, δ, θ(bn)∑
k=1

b2Sk−1
n Ek−1(η̃

2
k(bn))

)}
.

In view of (5.19), given β > 0,

Bn ⊆ An :=
{
tn

N1, δ, θ(bn)∑
k=1

bSk−1
n η̃k(bn)− (t2n/2)e

4ρ(1+ε)

N1, δ, θ(bn)∑
k=1

b2Sk−1
n Ek−1(η̃

2
k(bn))

> t2nN(bn)(1− (e4ρ(1+ε)/2)(δ + β))
}

for large enough n. Thus, by the Borel-Cantelli lemma, Lemma 5.5 follows if we can
check that ∑

n≥1

P(An) <∞. (5.20)

As a preparation for this matter, we intend to show that

Eτn =: E exp
(
tn

N1, δ, θ(bn)∑
k=1

bSk−1
n η̃k(bn)− (t2n/2)e

4ρ(1+ε)

N1, δ, θ(bn)∑
k=1

b2Sk−1
n Ek−1(η̃

2
k(bn))

)
≤ 1.

(5.21)
Using ex ≤ 1 + x+ (x2/2)e|x| for x ∈ R and Ek−1η̃k(bn) = 0 we infer

Ek−1 exp(tnb
Sk−1
n η̃k(bn)) ≤ 1 + (t2n/2)b

2Sk−1
n Ek−1(η̃

2
k(bn) exp(tnb

Sk−1
n |η̃k(bn)|)) a.s.

Further,
tnb

Sk−1
n |η̃k(bn)| ≤ 2ρ(2 + ε)1/2 ≤ 4ρ(1 + ε) a.s.

This in combination with ex ≥ 1 + x for x ≥ 0 yields

Ek−1
(
exp(tnb

Sk−1
n η̃k(bn))

)
exp(−(t2n/2)e4ρ(1+ε)b2Sk−1

n Ek−1(η̃
2
k(bn)) ≤ 1 a.s.

Inequality (5.21) is a consequence of this and the tower property of conditional expecta-
tions:

EN1, δ, θ(bn)−1τn

= exp
(
tn

N1, δ, θ(bn)−1∑
k=1

bSk−1
n η̃k(bn)− (t2n/2)e

4ρ(1+ε)

N1, δ, θ(bn)−1∑
k=1

b2Sk−1
n Ek−1(η̃

2
k(bn))

)
× EN1, δ, θ(bn)−1

(
exp(tnb

Sk−1
n η̃N1, δ, θ(bn)(bn))

)
× exp(−(t2n/2)e4ρ(1+ε)b2Sk−1

n EN1, δ, θ(bn)−1(η̃
2
N1, δ, θ(bn)

(bn))

≤ exp
(
tn

N1, δ, θ(bn)−1∑
k=1

bSk−1
n η̃k(bn)−(t2n/2)e4ρ(1+ε)

N1, δ, θ(bn)−1∑
k=1

b2Sk−1
n Ek−1(η̃

2
k(bn))

)
a.s.

Further,

EN1, δ, θ(bn)−2τn = EN1, δ, θ(bn)−2(EN1, δ, θ(bn)−1τn) ≤ exp
(
tn

N1, δ, θ(bn)−2∑
k=1

bSk−1
n η̃k(bn)

− (t2n/2)e
4ρ(1+ε)

N1, δ, θ(bn)−2∑
k=1

b2Sk−1
n Ek−1(η̃

2
k(bn))

)
a.s.
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Repeating this argument N1, δ, θ(bn) times we arrive at (5.21).
We are ready to prove (5.20). By Markov’s inequality and (5.21),

P(An) ≤ exp
(
− t2nN(bn)(1− (e4ρ(1+ε)/2)(δ + β))

)
Eτn

≤ exp
(
− t2nN(bn)(1− (e4ρ(1+ε)/2)(δ + θ))

)
.

Given small enough ε > 0, and δ ∈ (0, 1) and β > 0 satisfying δ + β ∈ (0, 1) we can find
ρ > 0 such that (2 + ε)(1− (e4ρ(1+ε)/2)(δ + β)) > 1. This together with the property (c) of
B ensures ∑

n≥1

exp(−t2nN(bn)((1− (e4ρ(1+ε)/2)(δ + θ)))) <∞,

and (5.20) follows. The proof of Lemma 5.5 is complete.

Lemma 5.6. Let (bn)n∈N ∈ B. Then

lim
n→∞

sup
b∈[bn, bn+1]

∣∣∣f(b)N1, δ, θ(b)∑
k=1

bSk−1ηk − f(bn)
N1, δ, θ(bn)∑

k=1

bSk−1
n ηk

∣∣∣ = 0 a.s.

Proof. Throughout the proof we tacitly assume that the equalities and inequalities hold
a.s. We start by writing, for b ∈ [bn, bn+1],

f(b)

N1, δ, θ(b)∑
k=1

bSk−1ηk − f(bn)
N1, δ, θ(bn)∑

k=1

bSk−1
n ηk =

N1, δ, θ(bn)∑
k=1

(
f(b)bSk−1 − f(bn)bSk−1

n

)
ηk

+ f(b)

N1, δ, θ(b)∑
k=N1, δ, θ(bn)+1

bSk−1ηk =: In(b) + Jn(b).

Summation by parts yields

In(b) =
(
f(b)b

SN1, δ, θ(bn)−1 − f(bn)b
SN1, δ, θ(bn)−1

n

)
TN1, δ, θ(bn)

+

N1, δ, θ(bn)−1∑
k=1

(
f(b)(bSk−1 − bSk)− f(bn)(bSk−1

n − bSkn )
)
Tk =: In,1(b) + In,2(b),

where Tk = η1 + . . . + ηk for k ∈ N. For large enough n for which SN1, δ, θ(bn)−1 ≥
δ(N1, δ, θ(bn) − 1) a.s. (this is secured by the strong law of large numbers) and, given
ε > 0,

δ| log bn+1|/(1− b2δn ) ≥ 1/2− ε (5.22)

(this is ensured by the property (a) of B),

sup
b∈[bn, bn+1]

|In,1(b)| ≤ 2f(bn)b
δ(N1, δ, θ(bn)−1)
n+1 |TN1, δ, θ(bn)|

≤ 2b−2δ1 f(bn)(log(1/(1− b2δn )))−(1/2−ε)(1+θ)O
(
(N1, δ, θ(bn) log logN1, δ, θ(bn))

1/2
)

= O
( (log log(1/(1− bn)))1/2

(log(1/(1− bn)))(1/2−ε)(1+θ)

)
→ 0 a.s. as n→∞.

having utilized (5.7) for the inequality. We are now passing to the analysis of In,2(b). By
the strong law of large numbers, with the same δ ∈ (0, 1) there exists an a.s. finite τ such
that max(δk, 1) ≤ Sk ≤ (2− δ)k for all k ≥ τ + 1. Since, for b ∈ [bn, bn+1],∣∣∣ τ∑

k=1

f(b)(bSk−1 − bSk)Tk
∣∣∣ ≤ f(b) τ∑

k=1

(bSk−1 + bSk)|Tk| ≤ f(bn)
τ∑
k=1

(bSk−1
n + bSkn )|Tk|
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we infer

lim
n→∞

sup
b∈[bn bn+1]

∣∣∣ τ∑
k=1

f(b)
(
bSk−1 − bSk

)
Tk

∣∣∣ = 0 a.s.

We need some preparation to treat the remaining part of the sum. Using the fact that
when ξk ≥ 0 the function b 7→ f(b)(1− bξk) is nonincreasing for b < 1 close to 1 we obtain
on the event {ξk ≥ 0, τ ≤ k − 1}, for b ∈ [bn, bn+1] and large n ∈ N,

f(bn)(b
Sk−1
n − b

Sk−1

n+1 )(1− bξkn ) ≤ f(bn)
(
bSk−1
n − bSkn

)
− f(b)

(
bSk−1 − bSk

)
≤ bSk−1

n

(
f(bn)(1− bξkn )− f(bn+1)(1− bξkn+1)

)
.

Combining this with a similar inequality on the event {ξk < 0, τ ≤ k − 1} we arrive at∣∣f(bn)(bSk−1
n − bSkn

)
− f(b)

(
bSk−1 − bSk

)∣∣ ≤ f(bn)(bSk−1

n+1 − bSk−1
n

)
|1− bξkn |

+ bSk−1
n

(
f(bn)|1− bξkn | − f(bn+1)|1− bξkn+1|

)
for b and n as above. Thus, for b ∈ [bn, bn+1] and large n ∈ N,

∣∣∣N1, δ, θ(bn)−1∑
k=τ+1

(
f(b)(bSk−1 − bSk)− f(bn)(bSk−1

n − bSkn )
)
Tk

∣∣∣
≤

N1, δ, θ(bn)−1∑
k=τ+1

∣∣f(b)(bSk−1 − bSk)− f(bn)(bSk−1
n − bSkn )

∣∣|Tk|
≤ f(bn)

N1, δ, θ(bn)−1∑
k=τ+1

(
b
Sk−1

n+1 − bSk−1
n

)
|1− bξkn ||Tk|

+

N1, δ, θ(bn)−1∑
k=τ+1

bSk−1
n

(
f(bn)|1− bξkn | − f(bn+1)|1− bξkn+1|

)
|Tk| =: In,21(b) + In,22(b).

For all k ∈ N and all n ∈ N,

|1− bξkn | ≤ | log bn|(ξ+k + ξ−k b
ξk
n ), (5.23)

where, as usual, x+ = max(x, 0) and x− = max(−x, 0) for x ∈ R. For k ≥ τ +1 and n ∈ N,
by the mean value theorem for differentiable functions,

b
Sk−1

n+1 − bSk−1
n ≤ Sk−1b

Sk−1−1
n+1 (bn+1 − bn) ≤ b−11 Sk−1b

Sk−1

n+1 (bn+1 − bn) (5.24)

and thereupon

(b
Sk−1

n+1 − bSk−1
n )|1− bξkn | ≤ (2− δ)b−11 (bn+1− bn)| log bn|k

(
b
Sk−1

n+1 ξ
+
k +(bn+1/bn)

Sk−1bSkn ξ−k
)
.

Thus,

(2− δ)−1b1
N1, δ, θ(bn)−1∑

k=τ+1

(
b
Sk−1

n+1 − bSk−1
n

)∣∣1− bξkn
∣∣|Tk|

≤ (bn+1 − bn)| log bn|
N1, δ, θ(bn)∑

k=1

k|Tk|
(
bδ(k−1)n+1 ξ+k + (bn+1/bn)

(2−δ)kbδkn ξ
−
k

)
≤ (bn+1 − bn)| log bn|N1, δ, θ(bn)( sup

1≤k≤N1, δ, θ(bn)
|Tk|)

(∑
k≥1

bδ(k−1)n+1 ξ+k

+ (bn+1/bn)
(2−δ)N1, δ, θ(bn)

∑
k≥1

bδkn ξ
−
k

)
.
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By Theorem 1.1, as n→∞,∑
k≥1

bδ(k−1)n+1 ξ+k ∼ (1− bδn+1)
−1Eξ+ and

∑
k≥1

bδkn ξ
−
k ∼ (1− bδn)

−1Eξ− a.s. (5.25)

Using (5.7) in combination with the property (a) of B for the first equality and the
property (b) of B for the second we infer

f(bn)(bn+1 − bn)| log bn|N1, δ, θ(bn)( sup
1≤k≤N1, δ, θ(bn)

|Tk|)
∑
k≥1

bδ(k−1)n+1 ξ+k

= O
(bn+1 − bn

1− bn

(
log log

1

1− bn

)3/2)
= o(1) a.s. as n→∞.

Invoking once again the property (b) of B we obtain limn→∞ log(bn+1/bn)N1, δ, θ(bn) = 0,
whence limn→∞(bn+1/bn)(2−δ)N1, δ, θ(bn) = 1. With this at hand we can argue as before to
conclude that a.s.

lim
n→∞

f(bn)(bn+1 − bn)| log bn|N1, δ, θ(bn)(bn+1/bn)
(2−δ)N1, δ, θ(bn)

× ( sup
1≤k≤N1, δ, θ(bn)

|Tk|)
∑
k≥1

bδkn ξ
−
k = 0.

Thus, we have proved that limn→∞ In,21(b) = 0 a.s.
Further,

In,22(b) = (f(bn)− f(bn+1))

N1, δ, θ(bn)−1∑
k=τ+1

bSk−1
n |1− bξkn ||Tk|

+ f(bn+1)

N1, δ, θ(bn)−1∑
k=τ+1

bSk−1
n

(∣∣1− bξkn
∣∣− ∣∣1− bξkn+1

∣∣)|Tk|.
In view of (5.23),

N1, δ, θ(bn)−1∑
k=τ+1

bSk−1
n |1−bξkn ||Tk| ≤ | log bn|( sup

1≤k≤N1, δ, θ(bn)
|Tk|)

N1, δ, θ(bn)−1∑
k=τ+1

(bSk−1
n ξ+k +bSkn ξ−k )

≤ | log bn|( sup
1≤k≤N1, δ, θ(bn)

|Tk|)
∑
k≥1

(bδ(k−1)n ξ+k + bδkn ξ
−
k ).

Invoking (5.25) and (5.7) in combination with limn→∞N1, δ, θ(bn)(f(bn))2 = (1 + θ)(2δ)−1

we conclude that

(f(bn)− f(bn+1))

N1, δ, θ(bn)−1∑
k=τ+1

bSk−1
n |1− bξkn ||Tk|

= O
(f(bn)− f(bn+1)

f(bn)

(
log log

1

1− b2n

)1/2)
= o(1) a.s. as n→∞.

The last equality is justified as follows. Using subadditivity of x 7→ x1/2 on [0,∞) we
obtain, for large n,(f(bn)− f(bn+1)

f(bn)

)2
log log

1

1− b2n

≤
(
log log

1

1− b2n+1

− log log
1

1− b2n
+

b2n+1 − b2n
1− b2n

log log
1

1− b2n

) log log 1
1−b2n

log log 1
1−b2n+1

.
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The property (a) of B entails

lim
n→∞

log(1/(1− b2n+1))

log(1/(1− b2n))
= 1 and lim

n→∞

log log(1/(1− b2n+1))

log log(1/(1− b2n))
= 1, (5.26)

and the first of these ensures

lim
n→∞

(
log log

1

1− b2n+1

− log log
1

1− b2n

)
= 0.

Finally,

lim
n→∞

b2n+1 − b2n
1− b2n

log log
1

1− b2n
= 0

is a consequence of the property (b) of B. Thus, the equality that we wanted to justify
does indeed hold.

For the analysis of the second piece of In,22(b) we need an estimate similar to (5.24):
for k, n ∈ N,∣∣1− bξkn

∣∣− ∣∣1− bξkn+1

∣∣ = ∣∣bξkn+1 − bξkn
∣∣ ≤ (bn+1 − bn)

(
ξ+k b

ξk−1
n+1 + ξ−k b

ξk−1
n

)
≤ b−11 (bn+1 − bn)

(
ξ+k + ξ−k b

ξk
n

)
.

This implies that

f(bn+1)

N1, δ, θ(bn)−1∑
k=τ+1

bSk−1
n

(∣∣1− bξkn
∣∣− ∣∣1− bξkn+1

∣∣)|Tk|
≤ b−11 f(bn)(bn+1 − bn)( sup

1≤k≤N1, δ, θ(bn)
|Tk|)

∑
k≥1

(bδ(k−1)n ξ+k + bδkn ξ
−
k )

= O
(bn+1 − bn

1− bn

(
log log

1

1− bn

)1/2)
= o(1) a.s. as n→∞.

Here, while the first equality is ensured by (5.7) and (5.25), the second is a consequence
of the property (b) of B. The proof of limn→∞ In(b) = 0 a.s. is complete.

We proceed by analyzing Jn(b): for b ∈ [bn, bn+1],

Jn(b)

= f(b)

N1, δ, θ(b)−1∑
k=N1, δ, θ(bn)

(bSk−1 − bSk)Tk + f(b)(b
SN1, δ, θ(b)−1TN1, δ, θ(b) − b

SN1, δ, θ(bn)−1TN1, δ, θ(bn))

=: Jn,1(b) + Jn,2(b).

As before, appealing to the strong law of large numbers, we conclude that

sup
b∈[bn, bn+1]

|Jn,2(b)| ≤ 2f(bn)b
δ(N1, δ, θ(bn)−1)
n+1 sup

k≤N1, δ, θ(bn+1)

|Tk|

≤ 2b−2δ1 f(bn)(log(1/(1− b2δn )))−(1/2−ε)(1+θ)O
(
(N1, δ, θ(bn+1) log logN1, δ, θ(bn+1))

1/2
)

= O
( (log log(1/(1− bn)))1/2

(log(1/(1− bn)))(1/2−ε)(1+θ)

)
→ 0 a.s. as n→∞.

We have used (5.7) and (5.22) for the inequality and the property (a) of B and its conse-
quences (5.26) for the equality. Invoking (3.3) we obtain, for large n and appropriate
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constant C > 0,

sup
b∈[bn, bn+1]

|Jn,1(b)| ≤ sup
b∈[bn, bn+1]

f(b)

N1, δ, θ(b)−1∑
k=N1, δ, θ(bn)

|bSk−1 − bSk ||Tk|

≤ Cf(bn)| log bn|
N1, δ, θ(bn+1)−1∑
k=N1, δ, θ(bn)

bδkn+1|ξk|( sup
k≤N1, δ, θ(bn+1)

|Tk|)

≤ Cf(bn)| log bn|
∑

k≥N1, δ, θ(bn)

bδkn+1|ξk|O
(
(N1, δ, θ(bn+1) log logN1, δ, θ(bn+1))

1/2
)
.

We use Lemma 3.2 with η = |ξ|, λ = δ, M(b) = N1, δ, θ(b) − 1, xn = bn and yn = bn+1.
Recalling the property (a) of B we conclude that limn→∞N1, δ, θ(bn)(1 − bδn+1) = ∞.
Hence, an application of that lemma yields∑

k≥N1, δ, θ(bn)

bδkn+1|ξk| ∼ E|ξ|bN1, δ, θ(bn)
n+1 (1− bδn+1)

−1 a.s. as n→∞.

Using once again the property (a) of B and (5.26) in combination with the estimate for

b
N1, δ, θ(bn)
n+1 which is implied by (5.22) we infer

sup
b∈[bn, bn+1]

|Jn,1(b)| = O
( (log log(1/(1− bn)))1/2

(log(1/(1− bn)))(1/2−ε)(1+θ)

)
→ 0 a.s. as n→∞.

The proof of Lemma 5.6 is complete.

We are ready to prove Proposition 5.1.

Proof of Proposition 5.1. We only prove (5.1), for (5.2) is a consequence of (5.1) with
−ηk replacing ηk.

By Lemmas 5.2 and 5.3 and (5.11), (5.1) is equivalent to

lim supb→1−f(b)

N1, δ, θ(b)∑
k=1

bSk−1ηk 1Sck(b) ≤ 1 a.s.

The latter limit relation holds true by Lemma 5.5 in combination with (5.12) and the fact
that Ek−1(ηk 1Sck(b)) = −Ek−1(ηk 1Sk(b)), and Lemma 5.6.

Proposition 5.7. Under the assumptions of Theorem 1.5,

lim supb→1−

( 1− b2

log log 1
1−b2

)1/2∑
k≥0

bSkηk+1 ≥ (2s2µ−1)1/2 a.s. (5.27)

and

lim infb→1−

( 1− b2

log log 1
1−b2

)1/2∑
k≥0

bSkηk+1 ≤ −(2s2µ−1)1/2 a.s. (5.28)

Recall the notation: for b ∈ (0, 1) close to 1,

N2(b) =
⌊ 1

1− b2
log

1

1− b2
⌋
.

Denote by B∗ the class of increasing sequences (bn)n∈N of positive numbers satisfying
the following properties:
(a) limn→∞ bn = 1 and limn→∞(1− bn) log n = 0;
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(b) for large n, Nn+1 ≥ N2(bn), where

Nn :=
⌊ log(1− 1/ log n)

2 log bn

⌋
.

(c) for all a ∈ (0, 1) and some n0 ∈ N,
∑
n≥n0

(
log
(

1
1−b2

n

))−a
=∞.

It was shown in Section 3 of [6] (see also pp. 180,181 and 184 in [5]) that the sequence
(bn)n≥3 given by

bn := exp
(
− 1

n!
∏n
j=2(log j)

2
∏n
k=3 log log k

)
belongs to the class B∗.

As in the proof of Proposition 5.1 we proceed via a sequence of lemmas.

Lemma 5.8. Under the assumptions of Theorem 1.5,

lim
n→∞

f(bn)

Nn∑
k=1

bSk−1
n ηk = 0 a.s.

Proof. We start by noting that

lim
n→∞

f(bn)(Nn log logNn)
1/2 = 0 (5.29)

or, equivalently,

lim
n→∞

1− b2n
log log(1/(1− b2n))

Nn log logNn = 0.

The latter is an immediate consequence of (1− b2n)Nn ∼ (log n)−1 → 0 as n→∞ and

lim supn→∞
log logNn

log log(1/(1− b2n))
≤ 1.

Formula (3.2) with ` = Nn and b = bn reads

Nn∑
k=1

bSk−1
n ηk =

Nn−1∑
k=1

(bSk−1
n − bSkn )Tk + b

SNn−1
n TNn ,

where Tk = η1 + . . . + ηk for k ∈ N. Using limn→∞N(n) log bn = 0 in combination with
the strong law of large numbers we infer

lim
n→∞

b
SNn−1
n = 1 and lim

n→∞
b
SNn
n = 1 a.s. (5.30)

This together with the law of the iterated logarithm for standard random walks entails

lim supn→∞
b
SNn−1
n TNn

(Nn log logNn)1/2
= 21/2 a.s.

Further, with the same N as in (3.3) (we replace µ− ε with δ),

lim
n→∞

N∑
k=1

(bSk−1
n − bSkn )Tk = 0 a.s.

According to (3.3), for large enough n and a constant c > 0,

∣∣∣ Nn−1∑
k=N+1

(bSk−1
n − bSkn )Tk

∣∣∣ ≤ Nn−1∑
k=1

|bSk−1
n − bSkn ||Tk| ≤ c| log bn|

∑
k≥1

bδkn |ξk|( sup
k≤Nn

|Tk|)

= O((Nn log logNn)
1/2) a.s.
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The last equality is a consequence of Theorem 1.1 (which gives
limn→∞ | log bn|

∑
k≥1 b

δk
n |ξk| = δ−1E|ξ| a.s.) and (5.7). An appeal to (5.29) completes the

proof of Lemma 5.8.

Lemma 5.9. Under the assumptions of Theorem 1.5, for all ε ∈ (0, 1),

P
{
f(bn)

N2(bn)∑
k=Nn+1

bSk−1
n ηk > 1− ε i.o.

}
= 1. (5.31)

Proof. Assume that we have already proved that, for all ε1 ∈ (0, 1),

P{Cn(ε1) i.o.} = 1, (5.32)

where

Cn(ε1) :=
{
f(bn)b

−SNn
n

N2(bn)∑
k=Nn+1

bSk−1
n ηk > 1− ε1

}
, n ∈ N.

Setting, for each ε2 ∈ (0, 1), Dn(ε2) := {bSNnn > 1 − ε2} we conclude with the help of
the second equality in (5.30) that, for all ε2 ∈ (0, 1), P{Dn(ε2) eventually} = 1. This in
combination with (5.32) yields, for all ε1, ε2 ∈ (0, 1),

P
{
Cn(ε1)

⋂
Dn(ε2) i.o.

}
= 1.

Since

Cn(ε1)
⋂
Dn(ε2) ⊆

{
f(bn)

N2(bn)∑
k=Nn+1

bSk−1
n ηk > (1− ε1)(1− ε2)

}
, n ∈ N,

we arrive at (5.31).
By the property (b) of B∗, Nn+1 ≥ N2(bn) for large n which implies that, for large n,

the random variables

b
−SNn
n

N2(bn)∑
k=Nn+1

bSk−1
n ηk = ηNn+1 + b

ξNn+1
n ηNn+2 + . . .+ b

ξNn+1+...+ξN2(bn)−1
n ηN2(bn)

are independent. Hence, by the converse part of the Borel-Cantelli lemma, (5.32) is a
consequence of

∑
n≥1

P
{
f(bn)b

−SNn
n

N2(bn)∑
k=Nn+1

bSk−1
n ηk > 1− ε

}
=∞. (5.33)

We intend to prove (5.33). Fix any δ ∈ (0, 1). For each n ∈ N and t > 0, put

qn(t) := 2t−2
⌊
log log

1

1− b2n

⌋
.

For notational simplicity, we shall write qn for qn(t). Further, for each n ∈ N and each
nonnegative integer k ≤ qn define numbers rk,n by r0,n := 0,

rk,n := inf
{
j ≥ rk−1,n + 1 : b

2δrk−1,n
n

j−1∑
k=rk−1,n

b2kn ≥ σ2
nq
−1
n

}
, k ∈ N, k ≤ qn − 1,
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where σ2
n :=

∑N2(bn)−Nn−1
k=0 b2kn , and rqn,n := N2(bn)−Nn + 1. One can check by a direct

calculation that the numbers are well-defined and that, for k ∈ N, k ≤ qn,

rk,n−rk−1,n−1∑
k=0

b2kn ∼ rk,n − rk−1,n ∼
σ2
n

qn
, n→∞. (5.34)

For the latter we have used the fact that the relations limn→∞ b
2N2(bn)
n = 0 and

limn→∞ b2Nnn = 1 entail
σ2
n ∼ (1− b2n)

−1, n→∞.

For each n ∈ N, k ∈ N0, k ≤ qn and t > 0, put

Z̃k,n := q1/2n σ−1n

rk,n−1∑
j=rk−1,n

bSjn ηj+1

and

Zk,n := q1/2n σ−1n b
(1+δ)rk−1,n
n

rk,n−1∑
j=rk−1,n

b
Sj−Srk−1,n
n ηj+1.

Observe that the random variables Z1,n, . . . , Zqn,n are independent, and

Zk,n
d
= q1/2n σ−1n b

(1+δ)rk−1,n
n

rk,n−rk−1,n−1∑
j=0

bSjn ηj+1,

where
d
= denotes equality of distributions. Noting that limn→∞ b

(1+δ)rk−1,n
n = 1 and then

using (5.34) we infer with the help of Lemma 4.1 that

lim
n→∞

P{Zk,n ≤ x} = P{Normal (0, 1) ≤ x}, x ∈ R. (5.35)

In view of
f(bn) ∼ (σnq

1/2
n t)−1 := αn, n→∞,

it suffices to prove (5.33) with αn replacing f(bn). Then with r−1,n := 0

P
{
αnb

−SNn
n

N2(bn)∑
k=Nn+1

bSk−1
n ηk > 1− ε

}
= P

{
αn

N2(bn)−Nn−1∑
k=0

bSkn ηk+1 > 1− ε
}

= P
{
σnq

1/2
n tαnq

−1
n

qn∑
k=1

Z̃k,n > t(1− ε)
}
≥ P

{
Z̃k,n > t(1− ε), 1 ≤ k ≤ qn

}
≥ P

{
Z̃k,n > t(1− ε), Srk−1,n

− Srk−2,n
≤ (1 + δ)(rk−1,n − rk−2,n), 1 ≤ k ≤ qn

}
≥ P

{
Zk,n > t(1− ε), Srk−1,n

− Srk−2,n
≤ (1 + δ)(rk−1,n − rk−2,n), 1 ≤ k ≤ qn

}
=

qn∏
k=1

P
{
Zk,n > t(1− ε), Srk−1,n

− Srk−2,n
≤ (1 + δ)(rk−1,n − rk−2,n)

}
.

Using (5.35) and the weak law of large numbers for random walks we conclude that,
uniformly in k ∈ N, k ≤ qn,

lim
n→∞

P
{
Zk,n > t(1− ε), Srk−1,n

− Srk−2,n
≤ (1 + δ)(rk−1,n − rk−2,n)

}
= P{Normal (0, 1) > t(1− ε)}. (5.36)
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Given constants c ∈ (0, 1) and ρ ∈ (0, 1) we can choose t so large that

A(t) := 2t−2(log(1/c) + ρ+ log(t(1− ε))) + (1− ε)2 < 1

and that, for large n,

logP
{
Zk,n > t(1− ε), Srk−1,n

− Srk−2,n
≤ (1 + δ)(rk−1,n − rk−2,n)

}
≥ logP{Normal (0, 1) > t(1− ε)} − ρ ≥ −(log(1/c) + ρ+ 2−1t2(1− ε)2 + log(t(1− ε)))

= 2−1t2A(t),

where the first inequality is a consequence of (5.36), and the second inequality follows
from Lemma 12.9 on p. 349 in [21]. Hence, for c, ρ, t and n as above

P
{
αnb

−SNn
n

N2(bn)∑
k=Nn+1

bSk−1
n ηk > 1− ε

}
≥ exp(−2−1t2A(t)qn)

= exp
(
−A(t)blog log(1/(1− b2n))c

)
.

This is the general term of a divergent series, hence (5.33) holds, because∑
n≥n0

(
log

1

1− b2n

)−A(t)

=∞

by the property (c) of B∗. The proof of Lemma 5.9 is complete.

Now we can prove Proposition 5.7 and Theorem 1.5.

Proof of Proposition 5.7. Relation (5.27) is a consequence of formula (5.10) and Lem-
mas 5.8 and 5.9. Replacing in (5.27) ηk with −ηk we obtain (5.28).

Proof of Theorem 1.5. Relation (1.4) follows from Propositions 5.1 and 5.7.
Recalling our convention that µ = s2 = 1 it remains to prove that

C

((
f(b)

∑
k≥0

bSkηk+1 : b ∈ ((1− e−1)1/2, 1)
))

= [−1, 1] a.s. (5.37)

To this end, we first note that the random function b 7→
∑
k≥1 b

Sk−1ηk is a.s. continuous

on [0, 1). Indeed, while the function b 7→ bSk−1ηk is a.s. continuous on [0, 1), the latter
series converges uniformly on [0, a] for each a ∈ (0, 1) with probability one. This follows
from the inequality bSk−1 ≤ bδ(k−1) ≤ aδ(k−1) which holds for large k and b ∈ [0, a]

and the fact that E
∑
k≥1 a

δ(k−1)|ηk| < ∞. Thus, the function b 7→ f(b)
∑
k≥1 b

Sk−1ηk

is a.s. continuous on ((1 − e−1)1/2, 1) with lim supb→1− = 1 and lim infb→1− = −1. This
immediately entails (5.37) with the help of the intermediate value theorem for continuous
functions.
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