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ASYMPTOTICS OF NORMALIZED CONTROL WITH MARKOV SWITCHINGS 

A. V. Nikitin1  and  U. T. Khimka2 UDC 519.21 

We study the process of transfer of Markov perturbations and control over this process under the condi-
tion of existence of the equilibrium point of the quality criterion.  For this control, we construct a nor-
malized process and establish its asymptotic normality in the form of Ornstein–Uhlenbeck process in the 
case where the transfer process varies under the influence of Markov switchings along a new trajectory 
of evolution from the state in which it was at the time of switching. 

Introduction  

For the transfer processes described by the stochastic differential equation [1] with diffusion control pro-
cess, the conditions of existence of this control were obtained in [2].  A special case of existence of an equilibri-
um point of the quality criterion is realized in numerous applied problems [3, 4].  A procedure of stochastic ap-
proximation for this control specifying the conditions of convergence to the equilibrium point of the quality cri-
terion can also be considered for this control [3].  In this case, an independent problem is connected with the de-
termination of the law of distribution of the limiting normalized control process under the conditions of conver-
gence of the constructed procedure [4, 5].  Thus, new results of application of a small parameter and the solution 
of the problem of singular perturbation [6] enable one to establish the asymptotic normality of the procedure of 
stochastic approximation with Markov perturbations [7] and semi-Markov switchings [8] for the corresponding 
normalization both in time and in a small parameter  ε > 0 .  

In the present paper, we consider a transfer process with Markov perturbations and control over the condi-
tions of existence of an equilibrium point of the quality criterion with Markov switchings [6].  For this control, 
we construct a normalized process and establish its asymptotic normality in the form of an Ornstein–Uhlenbeck 
process.  

We consider the case where the transfer process, i.e., a random evolution, varies under the influence of 
Markov switchings along the trajectory of new evolution from the state in which it was at the time of switching 
(regarded as the initial state) [6].  

Statement of the Problem 

Assume that the transfer process  yε (t) ∈Rd   is determined by the following stochastic differential equa-
tion:  

 dyε (t) = a yε (t), x t
ε2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
dt + σ yε (t), x t

ε2
⎛
⎝⎜

⎞
⎠⎟ , u

ε (t)⎛
⎝⎜

⎞
⎠⎟
dw(t), (1) 
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where  x(t) ,  t > 0 ,  is a uniformly ergodic Markov process in a measurable phase space of states  (X, X)   
specified by the generator [6]  

 Qϕ(x) = q(x) P(x,dy)[
X
∫ ϕ(y) − ϕ(x)] 

in a Banach space  B(X)   of real-valued bounded functions ϕ(x)   with supremum-norm  

 ϕ(x) = sup
x∈X

ϕ(x) . 

The generator  Q   is reducibly invertible on  B(X)   with the projector  

 Πϕ(x) := π(dx)ϕ(x)
X
∫ , 

where  π(B) ,  B ∈X ,  is a stationary distribution of the Markov process  x(t) ,  t ≥ 0 ,  given by the formula  

 π(dx)q(x) = qp(dx),      q = π(dx)q(x)
X
∫  

(ρ(dx)   is a stationary distribution of the embedded Markov chain  xn ,  n ≥ 0 ) and by the potential  R0   with 
the following operator representation:  

 R0 = Π − −1[Q +Π] . 

The functions   

 a(y, x) = (ak (y, x), k = 1, d)     and    σ(y, x, u) = (σk (y, x, u), k = 1, d) ,      y ∈Rd ,    x ∈X ,   

satisfy the conditions of existence of a global solution of the evolutionary equations  

 dyx (t) = a(yx (t), x)dt + σ(yx (t), x, ux (t))dw(t),    x ∈X , 

for every fixed value of  x   of the Markov process  x(t) ,  t ≥ 0 ,  on the segment  [τi , τi+1]   of stay of the pro-
cess  x(t) ,  t ≥ 0 ,  in the state  x ∈X .  

Assume that the control  u(t)   in the general representation (1) is specified by the condition  

 duε (t) = α(t)G yε (t), x t
ε2

⎛
⎝⎜

⎞
⎠⎟ , u

ε (t)⎛
⎝⎜

⎞
⎠⎟
dt , (2) 

where the conditions imposed on the function  α(t)   take the form  

 α(t)dt =
0

∞

∫ ∞       and      α2(t)dt <
0

∞

∫ ∞ . (3) 
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In particular, conditions (3) are satisfied for   

 α(t) = α
t

  

(this is considered in what follows).  

Note [3, 7, 8] that conditions (3) guarantee convergence of the control  uε (t)   to the equilibrium point of the 
quality criterion, i.e., to the point  u*  determined from the condition  

 G(y, u*) = 0 , 

 G(y, u) = π(dx)G(y, x, u)
X
∫ . 

The normalized control has the form  

 vε (t) = t
ε

uε (t)  (4) 

and the balance condition takes the form  

 ΠG(y, x, 0) = π(dx)G(y, x, 0)
X
∫ = 0 . (5) 

Theorem 1.  Under the conditions of convergence (3) for problem (1), (2) and the additional conditions  

 (D1)  σ̂v
2(y) = 2 π(dx)G(y, x, 0)R0G(y, x, 0)

X∫ > 0 , 

 (D2)  αg(y) < − 1
2

,     g(y) = π(dx) ′Gv(y, x, 0)X∫ , 

the weak convergence  

 vε (t) ⇒ ζ(t),      ε → 0 , 

is realized in every finite interval  (0 < t0 < t < T ) .  
The limiting process  ζ(t) ,  t > 0 ,  is the Ornstein–Uhlenbeck process specified by the generator  

 Lvϕ(y, v) = v αg(y) + 1
2

⎛
⎝⎜

⎞
⎠⎟ ′ϕv(y, v)+

1
2
α2σ̂v

2(y) ′′ϕvv(y, v) . 

We now establish several auxiliary properties of the transfer process  yε (t)   and the normalized con-

trol  vε (t) .  
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Lemma 1.  The processes  yε (t)   and  vε (t)   are solutions of the stochastic differential equations  

 dyε (t) = a(yε (t), xtε )dt + σ yε (t), xtε ,
ε
t
vε (t)⎛

⎝⎜
⎞
⎠⎟ dw(t), (6) 

 dvε (t) = ε−1 α
t
G yε (t), xtε ,

ε
t
vε (t)⎛

⎝⎜
⎞
⎠⎟ dt +

vε (t)
2t

dt , (7) 

where  

 xtε := x t
ε2

⎛
⎝⎜

⎞
⎠⎟ . 

Proof.  By using relation (4), we get  

 uε (t) = ε
t
vε (t) . 

Thus, in view of (2), we obtain (5) and (6).  

Lemma 2.  The generator of a three-component Markov process  

 ytε := yε (t), xtε := x t
ε2

⎛
⎝⎜

⎞
⎠⎟ , utε := uε (t), t ≥ t0 > 0 , (8) 

has the form  

  Lt
ε (x)ϕ(y, x, v) = ε−2Qϕ(y, x, v) +Vt

ε (x)ϕ(y, x, v), (9) 

where  

 
 
Vt

ε (x)ϕ(y, x, v) = ε−1 α
t
G y, x, ε

t
v⎛

⎝⎜
⎞
⎠⎟ +

v
2t

⎡
⎣⎢

⎤
⎦⎥

′ϕv(y, x, v)  

  + ′ϕy(y, x, v) a(y, x) +
1
2

′′ϕyy(y, x, v)σ2 y, x, ε
t
v⎛

⎝⎜
⎞
⎠⎟ . 

Proof.  To construct the generator of process (8), we determine the conditional expectation  

 E ϕ(yt+Δε , xt+Δε , vt+Δε ) − ϕ(y, x, v)
yε (t )=y, xtε=x, vε (t )=v

⎡
⎣⎢

⎤
⎦⎥

 

  = Ey,x,v ϕ(y + Δyε , xt+Δε , v + Δvε ) − ϕ(y, x, v)⎡⎣ ⎤⎦  
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  = Ey,x,v ϕ(y + Δyε , x, v + Δvε ) − ϕ(y, x, v)⎡⎣ ⎤⎦ I (θ > ε−2Δ)  

   + Ey,x,v ϕ(y + Δyε , xt+Δε , v + Δvε ) − ϕ(y, x, v)⎡⎣ ⎤⎦ I (θ < ε−2Δ) , (10) 

where  θ   is the time of stay of the Markov process  x(t) ,  t > 0 ,  in the state  x .  
Further, we take into account the representations  

 I (θ ≥ ε−2Δ) = 1− ε−2q(x)Δ + ο(Δ) , 

 I (θ < ε−2Δ) = ε−2q(x)Δ + ο(Δ). 

It follows from Eq. (6) that  

 yt+Δε = y + Δyε = y + a(yε (s), xsε )
t

t+Δ

∫ ds  

  + σ yε (s), xsε ,
ε
s
vε (s)⎛

⎝⎜
⎞
⎠⎟ dw(s)

t

t+Δ

∫ = y + σ yε (s), xsε ,
ε
s
vε (s)⎛

⎝⎜
⎞
⎠⎟ dw(s)

t

t+Δ

∫ , 

where  

 y = y + a(yε (s), xsε )ds
t

t+Δ

∫ . 

Consider  

 ϕ(y + Δyε , x, v + Δvε ) = ϕ y + σ yε (s), xsε ,
ε
s
vε (s)⎛

⎝⎜
⎞
⎠⎟ dw(s), x, v + Δvε

t

t+Δ

∫
⎛

⎝
⎜

⎞

⎠
⎟  

  =  ϕ (y, x, v + Δvε ) + ′ϕy(y, x, v + Δvε ) σ yε (s), xsε ,
ε
s
vε (s)⎛

⎝⎜
⎞
⎠⎟ dw(s)

t

t+Δ

∫  

   + 1
2

′′ϕyy(y, x, v + Δvε ) σ yε (s), xsε ,
ε
s
vε (s)⎛

⎝⎜
⎞
⎠⎟ dw(s)

t

t+Δ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ ο(Δ) . 

By virtue of (7), we find  

 ′ϕy(y, x, v + Δvε ) = ′ϕy(y, x, v) + ′′ϕyv(y, x, v) ε−1 α
t
G(y, x, v) + v

t
⎡
⎣⎢

⎤
⎦⎥
Δ + ο(Δ) 
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and  

 ϕ(y, x, v + Δvε ) = ϕ(y, x, v + Δvε ) 

   + ′ϕy(y, x, v + Δvε )a(y, x)Δ + ο(Δ) 

  =  ϕ(y, x, v) + ′ϕv(y, x, v) ε−1 α
t
G(y, x, v) + v

t
⎡
⎣⎢

⎤
⎦⎥
Δ  

   + ′ϕy(y, x, v)a(y, x)Δ + ο(Δ) . 

Similarly, we get  

 ′ϕy(y, x, v + Δvε ) = ′ϕy(y, x, v)  

  + ′′ϕyv(y, x, v) ε−1 α
t
G(y, x, v) + v

t
⎡
⎣⎢

⎤
⎦⎥
Δ  

  + ′′ϕyy(y, x, v)a(y, x)Δ + ο(Δ)  

and  

 ′′ϕyv(y, x, v + Δvε ) = ′′ϕyy(y, x, v)  

  + ′′′ϕyyv(y, x, v) ε−1 α
t
G y, x, ε

t
u⎛

⎝⎜
⎞
⎠⎟ +

v
t

⎡
⎣⎢

⎤
⎦⎥
Δ  

  + ϕyyyy
IV (y, x, v)a(y, x)Δ + ο(Δ) . 

This yields  

 ϕ(y + Δyε , x, v + Δvε ) = ϕ(y, x, v)  

  + ′ϕv(y, x, v) ε−1 α
t
G y, x, ε

t
v⎛

⎝⎜
⎞
⎠⎟ +

v
2t

⎡
⎣⎢

⎤
⎦⎥
Δ  + ′ϕy(y, x, v) a(y, x)Δ  

  + ′ϕy(y, x, v) + ′′ϕyv(y, x, v) ε−1 α
t
G y, x, ε

t
v⎛

⎝⎜
⎞
⎠⎟ +

v
t

⎡
⎣⎢

⎤
⎦⎥
Δ⎡

⎣⎢
 

  + ′′ϕyy(y, x, v)a(y, x)Δ
⎤
⎦⎥

σ yε (s), xsε ,
ε
s
vε (s)⎛

⎝⎜
⎞
⎠⎟ dw(s)

t

t+Δ

∫  
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  + 1
2

′′ϕyy(y, x, v) + ′′′ϕyyv(y, x, v) ε−1 α
t
G y, x, ε

t
v⎛

⎝⎜
⎞
⎠⎟ +

v
2t

⎡
⎣⎢

⎤
⎦⎥
Δ⎡

⎣⎢
 

   + ϕyyyy
IV (y, x, v)a(y, x)Δ ⎤

⎦⎥
σ yε (s), xsε ,

ε
s
vε (s)⎛

⎝⎜
⎞
⎠⎟ dw(s)

t

t+Δ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

 

  + ο(Δ) . 

This enables us to deduce the following relation for the first term in (10):  

 Ey,x,v[ϕ(y + Δyε , x, v + Δvε ) − ϕ(y, x, v)](1− ε−2q(x)Δ + ο(Δ))  

  = ′ϕv(y, x, v) ε−1 α
t
G y, x, ε

t
v⎛

⎝⎜
⎞
⎠⎟ +

v
t

⎡
⎣⎢

⎤
⎦⎥
Δ  

   + ′ϕy(y, x, v)a(y, x)Δ + 1
2

′′ϕyy(y, x, v)σ2 y, x, ε
t
v⎛

⎝⎜
⎞
⎠⎟ Δ + ο(Δ) . 

Similarly, we obtain the following relation for the second term in (10):  

 Ey,x,v ϕ y + Δyε , xt+Δε , v + Δvε( ) − ϕ(y, x, v)⎡
⎣

⎤
⎦ ε−2q(x)Δ + ο(Δ)⎡⎣ ⎤⎦  

  =  ε−2q(x)Ey,x,v ϕ(y, xt+Δε , v) − ϕ(y, x, v)⎡⎣ ⎤⎦ + ο(Δ) . 

Thus, according to the definition, for the generator of process (8), we get  

 
 
Lt
ε (x)ϕ(y, x, v) := lim

Δ→0

1
Δ
Ey,x,v ϕ y + Δyε , xt+Δε , v + Δvε( ) − ϕ(y, x, v)⎡

⎣
⎤
⎦  

  =   ε
−2Qϕ(y, x, v) +Vt

ε (x)ϕ(y, x, v) , 

where  

 Vtε (x)ϕ(y, x, v) = ′ϕv(y, x, v) ε−1 α
t
G y, x, ε

t
v⎛

⎝⎜
⎞
⎠⎟ +

ν
2t

⎡
⎣⎢

⎤
⎦⎥

 

  + ′ϕy(y, x, v)a(y, x) +
1
2

′′ϕyy(y, x, v)σ2 y, x, ε
t
v⎛

⎝⎜
⎞
⎠⎟ . 
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Lemma 3.  On the test functions  ϕ(y, x, v) ∈C 3,0,3(R, X, R) ,  the generator   Lt
ε (x)  admits the following  

asymptotic representation:  

 
 
Lt
ε (x)ϕ(y, x, v) = ε−2Qϕ(y, x, v) + ε−1 1

t
G0(y, x)ϕ(y, x, v)  

  + 
 
1
t

V (y, x)ϕ(y, x, v) + A(y, x)ϕ(y, x, v) + ο(ε) , (11) 

where  

  G0(y, x)ϕ(y, x, v) = αG(y, x, 0) ′ϕv(y, x, v) , 

 
 
V (y, x)ϕ(y, x, v) = v α ′Gv(y, x, 0) +

1
2

⎛
⎝⎜

⎞
⎠⎟ ′ϕv(y, x, v) , 

 
 
A(y, x)ϕ(y, x, v) = a(y, x) ′ϕy(y, x, v) +

1
2
σ2(y, x, 0) ′′ϕyy(y, x, v). 

Proof.  By using the decompositions  

 G y, x, ε
t
v⎛

⎝⎜
⎞
⎠⎟ = G(y, x, 0) + ′Gv(y, x, 0)

ε
t
v + ο(ε) , 

 σ2 y, x, ε
t
v⎛

⎝⎜
⎞
⎠⎟ = σ2(y, x, 0) + ο(ε) , 

we derive relation (11) from (9).  
Consider a perturbed test function  

 ϕt
ε (y, x, v) = ϕ(y, v) + ε 1

t
ϕ1(y, x, v) + ε2 1

t
ϕ(y, x, v). 

Lemma 4.  The solution of the problem of singular perturbations for the truncated generator  

 
 
Lt0
ε (x)ϕ(y, x, v) = ε−2Qϕ(y, x, v) + ε−1 1

t
G0(y, x)ϕ(y, x, v)  

  + 
 
1
t

V (y, x)ϕ(y, x, v) + A(y, x)ϕ(y, x, v)  (12) 

on the test functions  ϕt
ε (y, x, v)   with  ϕ(y, x) ∈C 3,3(R × R)   has the form  

 
 
Lt0
ε (x)ϕt

ε (y, x, v) = 1
t

Lϕ(y, v) + εθtε (x)ϕ(y, v), (13) 
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where the limit operator   L   is given by the formula  

 
 
Lϕ(y, v) = v αg(y) + 1

2
⎛
⎝⎜

⎞
⎠⎟ ′ϕv(y, v) +

1
2
α2σv

2(y) ′′ϕvv(y, v)  

  + tâ(y) ′ϕy(y, v) +
t
2
σ̂ y
2(y) ′′ϕyy(y, v) , (14) 

 â(y) = π(dx)a(y, x)
X
∫ ,      σ̂ y

2(y) = π(dx)σ2(y, x, 0)
X
∫ . 

Proof.  According to the scheme of solution of the problem of singular perturbations [6], we compute the 
value of generator (12) on the perturbed function  ϕt

ε (y, x, v)   as follows:  

 
 
Lt0
ε (x)ϕt

ε (y, x, v) = ε−2Qϕ(y, v) + ε−1 1
t
[Qϕ1(y, x, v)  

  + 
 
G0(y, x)ϕ(y, v)]+

1
t

Qϕ2(y, x, v) +
1
t

G0(y, x)ϕ1(y, x, v)  

  + 
 
1
t
(V (y, x) + tA(y, x))ϕ(y, v) + εθtε (x)ϕ(y, v) , 

where 

 
 
θtε (x)ϕ(y, v) = A(y, x)ϕ1(y, x, v) +

1
t 3/2

G0(y, x)ϕ2(y, x, v) + ε 1
t 2

V (y, x)ϕ2(y, x, v)  

  +  εA(y, x) ϕ2(y, x, v) . 

Since   Qϕ(y, v) = 0 ,  the function  ϕ1(y, x, v)   satisfies the equation  

  Qϕ1(y, x, v) + G0(y, x)ϕ(y, v) = 0 .  

By using the balance condition [5], we obtain a solution of this equation in the form  

  ϕ1(y, x, v) = R0G0(y, x)ϕ(y, v)   =   αR0G(y, x, 0) ′ϕv(y, v) . 

We now consider the equation for the function  ϕ2(y, x, v) ,  namely,  

  Qϕ2(y, v, x) + G0(y, x)ϕ1(y, v, x) + (V (y, v) + tA(y, v))ϕ = Lϕ(y, v) , (15) 
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where the limit operator   L   is determined from the condition of solvability of Eq. (14)  

  L = ΠG0(y, x)R0G0(y, x) +ΠV (y, x) + tΠA(y, x) . (16) 

Computing the right-hand side of (16), we obtain (14).  
Equation (15) admits the representation  

  Qϕ2 + L(y, x)ϕ(y, x) = Lϕ(y, x) , 

where  

  L(y, x) = G0(y, x)R0G0(y, x) + (V (y, x) + tA(y, x)). 

By using the last representation and relation (14), we get  

   ϕ2(y, x, v) = R0 !L(y, x)ϕ(y, v), 

where    
!L(y, x) = L(y, x) − L   [8].  

Proof of the Theorem.  In view of the smoothness of the components of system (1), (2) and representations 
of the functions  ϕ1   and  ϕ2 , we conclude that the remainder is bounded, i.e.,  

 θtε (x)ϕ(y, v) < M ,    M > 0 . (17) 

The convergence of the processes  yε (t)   and  vε (t)   to the processes  ξ(t)   and  ζ(t)   follows from (13) 
and (17) according to the Korolyuk model theorem [6].  Here, the generator of the process  ξ(t)   has the form  

 
 
Lyϕ(y, v) = tâ(y) ′ϕy(y, v) +

t
2
σ̂ y
2(y) ′′ϕyy(y, v) . 

The generator of the limit process  ζ(t)   has the form (14) and is the generator of the Ornstein–Uhlenbeck 
process.  

CONCLUSIONS 

We consider the case where the transfer process regarded as a random evolution varies under the influence 
of Markov switchings along a trajectory of new evolution together with the control.  Under the assumption of 
existence of an equilibrium point of control in the ergodic Markov medium, we construct a procedure of stochas-
tic approximation for this control.  For the normalized control, we deduce conditions of asymptotic normality in 
the form of Ornstein–Uhlenbeck process and establish the generator of the limiting control process.  

The obtained result enables one to seek the optimal solution of the problem of control over the diffusion 
process of transfer with Markov switchings.  
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